2025-01-20
通过对220 kV坪核线复合绝缘子芯棒脆断造成相间短路事故的原因分析,指出其主要原因是耐张绝缘子使用单串且没有安装均压环连接方式的设计不合理,以及早期生产的复合绝缘子存在产品制造缺陷,芯棒不耐酸等原因所致。提出采用新工艺及材料制造的复合绝缘子,采用双串带均压环设计,预防芯棒脆断及造成掉线相间短路事故。
分析了河南省2起220kv输电线路复合绝缘子芯棒断裂掉串的原因。断串均发生在绝缘子的高压端,端口垂直于芯棒轴线,断口大部分光滑平整;产品采用内锲式连接工艺、室温硫化硅橡胶封堵和普通芯棒;发生断串的档距都接近700m,属于大档距。结合拉力抽检实验,提出220kv以上输电线路,应采用压接式复合绝缘子,其端部采用高温硫化硅橡胶、多层密封工艺,采用耐酸芯棒;对于大跨越线路段,全部采用双悬垂串、"v"形串或"八"字形串绝缘子,并尽可能采用双独立挂点。
本文详细介绍了复合绝缘子芯棒脆断原因及主要影响因素,在此基础上叙述了目前国内外为降低绝缘子脆断发生率采取的一些措施,并有针对性的介绍了对芯棒耐应力腐蚀性的改进。
通过对2起复合绝缘子芯棒断裂掉串事故的分析及同期运行的同批次220kv输电线路复合绝缘子的抽样试验,初步分析了发生复合绝缘子芯棒脆断的原因,并提出防止类似事故发生的主要措施:改进金具接头界面的密封工艺并对档距较大的跨越采取双串。
介绍了一起复合绝缘子脆断的发生过程,通过解剖和相关电气、机械性能试验,以及脆断面形成机理等方面分析了脆断原因,发现芯棒脆断的原因是运行环境的恶劣加之结构的缺陷使得端部密封不良,造成酸蚀并最终导致芯棒机械性能下降而发生脆断。为防止脆断事故的发生,从加强检验、连接方式、材料工艺、存储安装等方面提出了相应的对策,保证电网的安全可靠运行。
通过对500kv棒形复合绝缘子高压端芯棒脆断事故发生原因的分析,指出其主要原因为绝缘子串电压分布严重不均匀及均压环设计、安装不规范而引起导线端电场畸变,加速了硅橡胶护套的电蚀穿孔所致。提出了将原下垂式线夹更换为上扛式防电晕线夹,作导线挂点“八”字型改造,在复合绝缘子导线侧加挂玻璃绝缘子;采用非标准长度的复合绝缘子与玻璃绝缘子组合成串等对策,以改善复合绝缘子的电场分布,降低导线端所承受的电压,消除畸变电场,预防芯棒脆断。实践表明,改进效果良好。
通过对一起复合绝缘子芯棒断事故特征分析和同期运行在500kv输电线路上的复合绝缘子抽样试验,初步判断复合绝缘子芯棒断裂原因属酸蚀脆断,并据此提出防止类似事故发生的措施,即厂商应改进金具接头界面的密封工艺并注意复合绝缘子芯棒的抗蚀性能,而设计者也应改进复合绝缘子的技术参数
通过对一起合成绝缘子芯棒脆断事故的分析以及同批次运行的500kv进口合成绝缘子的抽样试验,分析了合成绝缘子芯棒脆断的原因,发现由于端部密封不良及界面结构设计不合理,造成酸蚀并最终导致芯棒机械性能下降而发生脆断,同时,对合成绝缘子的使用提出了相应的对策和建议。
通过对一起合成绝缘子芯棒脆断事故的分析以及同批次运行的500kv进口合成绝缘子的抽样试验,分析了合成绝缘子芯棒脆断的原因,发现该绝缘子芯棒脆断主要是由于端部密封不良及界面结构设计不合理,造成酸蚀并最终导致芯棒机械性能下降而发生脆断,同时,对该类运行中合成绝缘子的使用提出了相应的对策,以保证电网的安全可靠运行。
通过对一起复合绝缘子芯棒断事故特征分析和同期运行在500kv输电线路上的复合绝缘子抽样试验,初步判断复合绝缘子芯棒断裂原因属酸蚀脆断,并据此提出防止类似事故发生的措施,即厂商应改进金具接头界面的密封工艺并注意复合绝缘子芯棒的抗蚀性能,而设计者应改进复合绝缘子的技术参数。
文章分析了合成绝缘子芯棒脆断的原因,芯棒脆断是由端部密封不良造成酸蚀引起的,脆断一般发生在合成绝缘子的高压端。为防止脆断事故的发生,厂家在选用良好耐酸蚀芯棒的同时,应改进端部密封结构和均压环的设计,以防止密封失效。运行单位应对运行中的合成绝缘子加强检测,以便及早发现有隐患的合成绝缘子。
研究了复合绝缘子用耐酸芯棒的性能,对4种芯棒在不同浓度的硝酸中的耐腐蚀性能进行了长期试验。结果表明,各项指标都符合应力腐蚀试验标准的耐酸芯棒其耐腐蚀性能也存在较大差别,性能好的耐酸芯棒即使在非常严酷的条件下也很难发生脆断。为适应不同工程应用的要求,作者根据试验结果讨论了选择优良耐酸芯棒的试验方法。
通过对500kv棒形复合绝缘子高压端芯棒脆断事故发生原因的分析,指出其主要原因为绝缘子串电压分布严重不及均压环设计、安装不规范引起导线端电场畸变,加速硅橡胶护套发生电蚀穿孔所致。提出将原下垂式线夹更换为上扛式防电晕线夹,导线挂点“八”字型改造,在复合绝缘子导线侧加挂玻璃绝缘子;采用非标准长度的复合绝缘子与玻璃绝缘子组合成串等对策来改善复合绝缘子的电场分布,降低其导线端承受的电压,消除畸变电场,达到预防芯棒脆断目的
对500kv复合绝缘子芯棒脆断事故的发生原因进行了分析,指出芯棒断裂是由于绝缘子电压分布严重不均及均压环设计、安装不规范引起导线端电场畸变所致。通过对原线路双联悬垂复合绝缘子下垂式线夹挂点进行"八"字形改造;利用下垂式线夹缩短的距离在导线侧增挂玻璃绝缘子;新建线路采用特制复合绝缘子与玻璃绝缘子组合方式,使复合绝缘子均压环,接头连接处远离高压端,改善了复合绝缘子的电场分布,降低了复合绝缘子导线端承受的电压,消除了畸变电场,避免了棒形悬式复合绝缘子芯棒脆断,取得了良好的效果。
复合绝缘子在运行过程中,高压端的芯棒与金具非联接部位所出现的断裂,不是纯拉力造成的,而是耐酸性差的芯棒,被高场强下电晕产生的no2与水反应生成的硝酸缓慢腐蚀后在承担正常载荷时造成的。文章分析了其断裂原因和作用机理,并提出了预防措施。
文章对复合绝缘子芯棒在气动漩涡作用下发生振动破坏的使用寿命估算方法进行了研究,计算了架空导线的振动频率及其时长,根据修正的goodman图、s-n曲线和miner线性损伤积累法则,给出了芯棒使用寿命的估算方法,通过220kv复合绝缘子芯棒使用寿命估算的算例,与实际统计寿命对比,表明了文章估算方法具有可靠性。
分析了复合绝缘子在超高压线路运行中发生芯棒脆断事故的原因,提出了利用玻璃绝缘子和复合绝缘子组合悬挂式解决方案。试验表明,复合绝缘子第1伞群处分布电压值在21~25kv之间,其中23~25kv的分布电压值都发生在中相绝缘子的高压端,满足实际需要。
介绍了玻璃纤维新应用——复合绝缘子芯棒制造所采用的基体材料和增强材料。重点介绍了适合制造复合绝缘子芯棒的基体材料环氧树脂的特点及其固化剂的选用及固化机理,以及提出了适合制造复合绝缘子芯棒的增强材料玻璃纤维的性能要求及目前适合选用的玻璃纤维品种。介绍了复合绝缘子芯棒生产工艺、生产中的注意要点及复合绝缘子芯棒的最终产品性能要求。
文章对复合绝缘子芯棒在气动漩涡作用下发生振动破坏的使用寿命估算方法进行了研究,计算了架空导线的振动频率及其时长,根据修正的goodman图、s-n曲线和miner线性损伤积累法则,给出了芯棒使用寿命的估算方法,通过220kv复合绝缘子芯棒使用寿命估算的算例,与实际统计寿命对比,表明了文章估算方法具有可靠性。
总结了广东电网复合绝缘子了应用于耐张串的运行情况,对运行后220kv耐张串复合绝缘子进行抽样试验,并对抽样试验结果进行了分析。讨论了耐张串复合绝缘子使用中担心的主要问题,对今后耐张串复合绝缘子的设计、选型及运行提出建议。
特高压复合绝缘子对于芯棒有较高的拉弯性能要求。通过对芯棒进行强度性能测试,研究了玻璃纤维纱含量对芯棒拉弯性能的影响。结果表明,当芯棒的纤维质量分数在79%~83%时,芯棒的机械性能最优。复合绝缘子中的芯棒最终按照质量分数80%左右的纤维含量进行生产,产品顺利通过了复合相间间隔棒产品定型试验。
使用pea法空间电荷测量系统测量了负直流高压电场作用后复合绝缘子芯棒材料中空间电荷分布,并进行了相关的分析和讨论。结果表明,在高压直流电场作用下,芯棒材料内部积累的空间电荷的极性和密度受到温度、电场强度和电场作用时间等因素的影响。由于陷阱深度的不同和物理、化学变化的作用,不同温度下芯棒材料内空间电荷的积聚极性和积聚量不同,特别是在20℃和40℃之间以及100℃和120℃之间存在明显变化。20℃下芯棒材料中空间电荷的积累随电场增大、电压作用时间的增加而增加。
一种用于大吨位的复合绝缘子芯棒的制造设备和生产工艺,放置在芳纶纱架、玻璃纤维纱架,将纤维穿过混杂纤维导纱架,密封好两端端盖,有序的将芳纶和玻璃纤维依次穿过辅层设计分纱器,带温控分区模具加热系统,带温控的二次固化加热烘箱和机械牵引系统,关闭带温控的环氧基胶料脱气搅拌釜上的出胶阀门,加热脱气后,设定好各个加热设备的控制温度后,
介绍了500kv北增甲线59号塔l2相双v形复合绝缘子串断裂的故障情况,通过分析芯棒和护套的受损形貌,指出故障形成的主要原因是复合绝缘子受到局部放电腐蚀和化学腐蚀而使机械强度降低,次要原因是均压环结构设计不合理。对此提出了反事故措施:加强复合绝缘子的红外测温普查以及时发现缺陷;改进制造工艺以减小芯棒表面的微裂纹深度;采用双悬垂串、双(或单)挂点、双线夹的结构形式以防止复合绝缘子掉串;改善均压环和线夹的结构使电场强度均匀和减小弯曲力。
为了减少复合绝缘子脆断而采用耐酸芯棒,耐酸芯棒是由无捻直接粗纱纤维浸渍起着粘合、保护纤维作用的树脂经模具拉挤固化而成型的。通过分析论证无捻直接粗纱的特点和树脂的防护性能,认为采用无捻直接粗纱纤维拉制的芯棒和提高芯棒纤维间树脂的固化度,可以避免酸介质进入棒内腐蚀纤维,保证耐酸芯棒性能的稳定性。并得出芯棒长期承受较大载荷对其树脂防护性能影响不大的结论
职位:厂房暖通工程师
擅长专业:土建 安装 装饰 市政 园林
文辑推荐
知识推荐
百科推荐