2025-02-17
针对拉萨市道路交通噪声污染问题,运用人工神经网络理论和方法对拉萨市道路交通噪声的等效连续声级进行预测。经检验,计算值与实测值接近,从而为道路交通噪声的预测提供了一种新的途径。
以bp人工神经网络模型为基础,建立预测模型,以小区某栋建筑物1期~8期的沉降观测数据为输入数据和输出数据,对网络模型进行训练,并对9期~12期实际观测值与预测值进行了比较,结果比较理想,从而验证了采用bp人工神经网络模型进行建筑物沉降的预测是可行的。
论文利用神经网络自学习、自组织、自适应能力的特性,在传统bp神经网络模型基础上,构建了道路交通事故预测的改进bp神经网络模型;以我国近年来道路交通事故统计资料为基础,通过所建预测模型,实现了对交通事故次数、死亡人数、直接经济损失等交通事故有关参数的预测。
人工神经网络是在模仿人脑处理问题的过程中发展起来的新型智能信息处理理论,通过对人工神经网络及bp网络的基本原理与特征的分析,建立了工程估价预测模型.
针对人工神经网络成矿预测模型结构难以确定的问题,详细阐述了一种在模型训练中进行隐层数目及隐层单元数目动态调整的人工神经网络算法,并以vc++为开发工具实现了变结构人工神经网络成矿预测模型,经用华南26个岩体检验,回忆率及预测率均高达100%。该方法提供了一种面向具体问题的动态解决方案,在成矿预测工作中具有一定的实用性。
针对基坑变形预测中信息的灰色性和数据的非线性性,提出用灰色神经网络预测基坑变形的新方法。用一桩锚联合支护体系实例进行了预测研究,得到支护体系的不同预测模型的组合预测值。研究结果表明:灰色神经网络预测误差比gm(1,1)预测模型小;与bp预测模型相比,前期误差大,后期误差小。在基坑变形监测中,为了更准确地预测基坑变形,可以采用灰色神经网络预测与bp预测相结合的方法进行预测。
【目的】利用bp人工神经网络模型预测太湖水污染指标,为探讨湖泊水污染物变化规律提供参考。【方法】利用2004~2010年浙江嘉兴王江泾断面自动监测站4项水质指标,建立了太湖水污染bp人工神经网络模型,并对太湖2012年前5周的水质情况进行预测。【结果】建立了浙江嘉兴王江泾断面的4项水质指标浓度的三层bp神经网络预测模型,其预测精度较高,对湖泊水环境污染物预测的适应性较好;对太湖2012年前5周的水质情况进行预测,结果表明,2012年前5周水质污染情况加重,基本为ⅴ类水质,符合太湖水质污染情况发展态势。【结论】bp人工神经网络具有很强的非线性映射能力和柔性的网络结构,与传统的统计建模方法相比,其预测精度较高,能较好地反映水质指标的内在变化规律,为控制水环境污染提供了科学预测方法。
轨道交通费率清分的实质是在不同线路下网络客流分布的问题。在充分考虑乘客出行路径选择多要素的基础上,提出一种基于神经网络的轨道交通客流清分模型。将影响乘客出行路径选择的多要素分为确定性要素和不确定性要素,通过样本训练神经元的抑制系数和激励系数,结合转换函数将结果传导给输出层输出。与传统模型相比,该模型更符合乘客出行选择的多要素心理。最后通过对比客流调查结果和logit模型表明,在排除其他要素的干扰下,该方法能够较好的实现客流在不同线路的清分。
轨道交通费率清分的实质是在不同线路下网络客流分布的问题。在充分考虑乘客出行路径选择多要素的基础上,提出一种基于神经网络的轨道交通客流清分模型。将影响乘客出行路径选择的多要素分为确定性要素和不确定性要素,通过样本训练神经元的抑制系数和激励系数,结合转换函数将结果传导给输出层输出。与传统模型相比,该模型更符合乘客出行选择的多要素心理。最后通过对比客流调查结果和logit模型表明,在排除其他要素的干扰下,该方法能够较好的实现客流在不同线路的清分。
短时交通流预测是现代智能交通系统的核心内容,针对城市道路被占所造成的城市交通拥堵排队问题,以路段视频统计为例,利用bp神经网络方法就实际通行能力、具体车辆数、事故持续时间与排队最长长度之间的关系进行预测分析,从实验模拟结果来看,该方法能有效地解决交通流实时和可靠性预测。
基于人工神经网络的工程造价预测模型——利用神经网络强大的非线性映射能力,提出了一种基于bp神经网络模型的工程造价预测模型,指出该预测模型可对不同情况的工程造价进行合理的预测,实例检验证明,该方法收敛速度快,预测的可靠性令人满意。
本文采用bp神经网络预测模型,通过在matlab软件建模,并对实际工程项目的支护结构顶水平位移的监测数据进行分析,预测其后的监测数据,结果表明bp神经网络拟合效果优越,仿真性强,具有很强的泛化能力,能够对实际工程的支护结构顶水平位移进行有效预测.
第47卷第6期厦门大学学报(自然科学版)vol.47no.6 2008年11月journalofxiamenuniversity(naturalscience)nov.2008 基于bp神经网络的工程估价模型及其应用 叶青,王全凤 (华侨大学土木工程学院,福建泉州362021) 收稿日期:20080414 基金项目:福建省自然科学基金(2008j0196)资助 email:yeqing@hqu.edu.cn 摘要:基于bp神经网络的工程估价模型具有高度的容错性和较强的泛化能力,通过对数据并行处理的方式能快速准 确地估算出工程造价.本文根据bp神经网络原理,选取福建泉州地区的21组工程实例来建立模型,其中19组为训练样 本,2组为检测样本,确定了13个主要造价
农产品价格风险预警模型的建立与应用 ——基于bp人工神经网络 赵瑞莹,杨学成 (山东农业大学经济管理学院山东泰安271018) 第29卷第2期 2008年3月 vol.29no.2 mar.2008 农业现代化研究 researchofagriculturalmodernization 作者简介:赵瑞莹(1963-),女,山东蓬莱人,教授,博士,2004-2006年曾在德国进修农业mba,研究方向为物流与供应链管理;杨学成(1961-), 男,山东东阿人,教授,博导,研究方向为农业经济理论与政策。 收稿日期:2007-12-07;修回日期:2008-01-22 摘要:农产品价格风险的防范要通过管理水平的提高来化解,农产品价格风险预警的引入则可实现农产品市场风 险管理方法的创新。本文建立了基于bp人工神经网络的农产品价格风险预警模型,并以生猪
采用遗传算法优化bp神经网络来建立一个道路交通事故宏观预测的模型.该模型结合遗传算法和神经网络两者的优点,具有更好的运算性能、更快的收敛速度和更高的精度.模型以交通事故死亡人数为输出变量,以机动车保有量、公路里程、人均gdp为输入变量,利用1978年至2006年的道路交通事故数据进行训练及检验.实例计算表明,建立的基于遗传算法的bp神经网络模型可以很好的适用于道路交通事故宏观预测,为制定交通安全对策提供理论依据.
人工神经网络在预测软基沉降中的应用研究——依据影响软土路基沉降的因素选取参数建立了bp神经网络预测最终沉降量模型,利用已建高速公路沉降数据,进行了软土地基最终沉降量的预测,取得了较为理想的效果。证明神经网络法能避免传统方法计算过程中各种人为因素...
泡沫金属试样测试复杂,对试样而言又急需知道基体结构参数与力学性能和阻尼性能的关系,采用线性回归技术无法实现这一功能,应用人工神经网络,则解决了通过测量泡沫金属的四个基本参数达到推知其力学性能、阻尼性能的课题。
混凝土强度是结构设计中控制的主要指标,其数值决定于水灰比、胶凝材料用量、矿物掺量、外加剂用量等多种因素,常规计算混凝土强度的公式因个人理解的不同而各异,一种仿生模型—人工神经网络则能很好地解决这个难题,文中尝试用人工神经网络对不同混凝土强度进行预测,结果表明此模型的可靠度很高,可以用以优化混凝土的试配,节约大量的时间、人力、物力和财力.
空调负荷是近年来增长较快的一类负荷,其特性对电网的电压稳定性影响很大。夏季影响空调负荷的因素主要是温度和湿度的变化。为了更好的预测空调降温负荷,研究了温度和湿度对空调负荷的影响。利用bp人工神经网络对电网空调负荷进行了预测,经过分析把日平均湿度量化成4段,和日平均湿度实际数值的模型进行计算比较,结果显示考虑日最高温度和日平均湿度量化为4段能更好的模拟温度、湿度和空调负荷之间的非线性关系,能更好的对电网空调负荷进行预测。
职位:消防造价员
擅长专业:土建 安装 装饰 市政 园林
文辑推荐
知识推荐
百科推荐