2025-02-08
根据企业风险特征指标预测问题的特点,提出将灰色系统GM(1,1)模型与神经网络结合建立一阶灰色神经网络预测模型,以实现系统预测的动态性及提高系统的预测精度.但该模型具有一定的局限性,从模型参数的角度给出了该模型只适用于具有\"单调\"性数据的证明,进而提出了三阶灰色神经网络预测模型,以适应预测数据\"非单调\"或摆动的情况.但随着系统建模过程中阶数的增加,预测精度会有所下降,因此应根据数据特点选择预测模型.最后,通过实证分析验证了上述模型及证明结论.
提出了一种基于灰色模型和神经网络组合的短期负荷预测方法。首先利用频域分解消除负荷序列的周期性,然后利用灰色模型计算负荷序列的历史拟合值和未来预测值,将其作为神经网络的输入。在历史数据中选择一天作为基准日,以该基准日的量为参照,以负荷的灰色模型拟合值相对基准日的变化量,以及温度变化量为bp神经网络的输入,实际负荷变化量为输出,训练神经网络并预测待预测日负荷的变化量,加上基准日负荷后得到预测负荷。该方法综合了灰色模型方法和神经网络方法的优点,仿真结果验证了方法的有效性。
结合灰色模型和bp神经网络模型的特点,对两种模型进行有机地组合,构建一种改进的灰色神经网络预测船舶流量方法。以实际船舶交通流量和主要影响因素为数据,运用遗传算法改进的灰色神经网络模型对上海洋山港的船舶交通流量进行预测,计算和matlab仿真结果表明,改进的灰色神经网络模型预测不仅精度较高,而且能准确预测船舶交通流量的变化规律。
为提高铁路货运量的预测准确性,运用灰色关联分析法,计算分析了与铁路货运量相关的主要社会指标,确定铁路货运量的影响因子分别为铁路运营里程、铁路电气化里程、铁路复线比重、公路运营里程、固定资产投资总额和钢材产量。将所确定的因子作为铁路货运量的预测指标,建立基于bp神经网络的铁路货运量预测模型,并对模型进行了应用测试。结果表明:bp神经网络模型具有较高的精度,最大相对误差为3.7%,平均相对误差为2.3%。该方法具有较快的收敛速度和较高的预测精度,可为我国铁路货运量的预测研究提供方法支撑。
利用智能方法对边坡形变进行预测,进而对矿区安全进行评估近年来成为研究的热点。针对边坡形变数据小样本、贫信息、高非线性等特点,本文将灰色理论与神经网络方法相结合构建灰色神经网络,充分利用灰色模型处理小样本和神经网络处理非线性的能力,对矿区边坡形变进行预测。实验分析表明,利用灰色神经网络进行形变预测是正确有效的,预测精度取得了较好的效果。
针对建筑能耗受局地气候多因素影响的特点,为了客观准确地对建筑能耗进行预测,本文引入了气象热舒适度来综合分析气候对建筑能耗的影响,并以该指数预测值、建筑能耗原始数据和日期类型作为输入层,进行复合灰色神经网络模型预测建筑能耗。该方法不仅克服了灰色模型和神经网络存在的预测缺陷,同时还考虑了气象因素对建筑能耗的影响。通过对北京某大厦的实例应用分析,取得了较高精度的预测结果,证实了该方法的合理可靠,为建筑能耗预测提供了新途径,其预测结果也将为大型建筑空调系统的再优化设计和改造提供参考。
本文分析了影响房价的多种因素;运用灰色gm(1,1)模型预测这些因素的数据走势,利用bp神经网络以历史数据为依据运用matlab进行仿真,得出我国未来五年房价预测值。结果表明,采用神经网络结合灰色gm(1,1)预测而得的各影响因素预测值,预测未来房价,具有很强的实用性。
基于灰色bp神经网络组合模型的基坑变形预测研究——为了使得基坑变形预测在“少样本”、“贫信息”的情况下依然能够得出精度较高的结果,在传统的灰色gm(1,1)模型和bp神经网络模型的基础上,进行了灰色bp神经网络组合模型的研究。通过总结2传统模型的原理和算...
准确的客流量预测在国家交通规划与管理中具有重要意义,预测方法的选择直接影响到预测的精度。客运量的预测具有小样本和非线性的特点。结合灰色理论和rbf神经网络的特点形成灰色-rbf神经网络模型,并采用客流运量分担率的方式对拟建铁路客流量进行预测。通过灰色理论对原始数据进行生成处理,将无规律的原始数据变为较有规律的生成数列,再利用rbf神经网络的超强适应能力和学习能力,大大加快学习速度并避免出现局部极小问题对生成数列进行预测,再将模型运用到客运量的预测中。最后结合新建兰州至中川机场铁路项目及调查数据进行客流量的预测研究,得出灰色-rbf神经网络模型对客流量具有很好的预测性。
准确的客流量预测在国家交通规划与管理中具有重要意义,预测方法的选择直接影响到预测的精度。客运量的预测具有小样本和非线性的特点。结合灰色理论和rbf神经网络的特点形成灰色-rbf神经网络模型,并采用客流运量分担率的方式对拟建铁路客流量进行预测。通过灰色理论对原始数据进行生成处理,将无规律的原始数据变为较有规律的生成数列,再利用rbf神经网络的超强适应能力和学习能力,大大加快学习速度并避免出现局部极小问题对生成数列进行预测,再将模型运用到客运量的预测中。最后结合新建兰州至中川机场铁路项目及调查数据进行客流量的预测研究,得出灰色-rbf神经网络模型对客流量具有很好的预测性。
本文提出了一种基于rbf神经网络的直接预测法,对公路货运量进行了预测,并利用matlab工具箱予以了实现.对2004和2005年公路货运量预测的结果表明,预测值与国家统计局公布的实际数值有很好的一致性,预测精度也高于其它rbf预测法,有很好的应用性.
为了对民航系统安全运行状态进行科学的分析和预测,针对反映民航系统安全运行状态的重要指标之一——飞行事故万时率,采用bp神经网络的时间序列非线性预测模型及方法,对其进行了分析研究和仿真验证,计算结果表明,该预测方法是可行的,并与实际具有较好的一致性。
公路货运量受多种因素影响,各因素的作用机制通常不能准确地用数学语言进行描述。采用广义回归神经网络(grnn)对货运量进行分析及预测。通过对1995~2003年南京市公路运量的历史数据进行分析和处理,对网络进行训练和拟合,用2004~2005年的实际数据进行模型检验,结果证明了grnn用于货运量预测的有效性。
通过对公路货运量的预测方法进行研究比较,并根据公路货运量形成的复杂和非线性等特点,建立bp神经网络预测模型.利用黑龙江省公路货运量及其相关影响因素的实际数据,确定网络输入与输出样本,并对bp神经网络预测系统进行训练和预测.通过对网络输出的误差曲线图的分析,验证bp神经网络预测系统的精确性和简单方便性,提高了公路货运量预测的精确性.
为简化震害预测工作,提出一种以房屋普查数据为震害影响因子并利用人工神经网络模型为工具的震害预测方法。从以往震害实例中选取了具有典型破坏特点的建筑物作为神经网络的学习样本,用收集的数据对网络进行了训练并得到了收敛的网络,应用此收敛的网络对一组新的房屋数据进行震害预测,结果表明了运用此方法和模型的实用性。
针对深基坑系统的复杂的非线性及基坑工程变形多步预测的重要性,将人工神经网络技术引入其中。分析了用bp网络进行多步预测时存在的不足,提出了基于递归神经网络的基坑工程变形多步预测模型。通过一软土深基坑工程变形多步预测实例的分析,论证了递归神经网络用于基坑工程变形多步预测的可靠性和实用性。该方法有效可行,在其他领域的多步预测中同样具有广阔的应用前景。
房地产业是国民经济发展的重要支柱产业之一,因此,科学预测房地产价格指数具有十分重要的意义。将神经网络算法应用于房价指数预测,收集我国主要城市的房地产价格指数数据,使用spssclementine软件进行分析。实验结果表明,该预测方法是可行的和有效的。
风险投资过程中,项目评估是首要的环节.评估过程中要根据项目的历史及现状,对项目的未来发展及收益做出比较科学准确的预测.本文介绍灰色建模预测方法,并应用该方法对某电子新材料创业公司的利润情况进行预测,得到了比较满意的效果.
针对高校涉密项目风险因素多和保密环境复杂的特点,利用三层bp神经网络对能够逼近任意非线性函数的良好特性,突破传统上基于统计学方法进行预测的限制,综合了时间序列的计算简单,需要历史数据少的优点,设计了一种体现时序的多因素动态时间序列bp神经网络预测模型,并将模型运用于某高校涉密项目泄密风险的预测研究中。仿真实验表明,此方法切实可行,而且具有较好的预测精度。
强烈的地震给人们生命财产带来巨大损失,为了能够在地震之前预测出建筑物震害,提出一多层砖房为例。利用matlab神经网络工具箱,建立一种基于贝叶斯正则算法的bp神经网络模型,并以过去发生地震地区的多层砖房调查数据为震害因子的震害预测方法。结果表明:对多层砖房的震害样本的预测达到理想效果。
针对基坑变形预测中信息的灰色性和数据的非线性性,提出用灰色神经网络预测基坑变形的新方法。用一桩锚联合支护体系实例进行了预测研究,得到支护体系的不同预测模型的组合预测值。研究结果表明:灰色神经网络预测误差比gm(1,1)预测模型小;与bp预测模型相比,前期误差大,后期误差小。在基坑变形监测中,为了更准确地预测基坑变形,可以采用灰色神经网络预测与bp预测相结合的方法进行预测。
针对一些复杂的非线性系统在神经网络逆动态控制方法下控制效果不理想的问题,本文提出对被控对象进行直接多步预测,利用多步预测性能指标函数对系统实现基于神经网络的逆控制。并将仿真结果与利用递推多步预测方法的结果进行了比较,得到直接多步预测控制较递推多步预测更准确的结论。
以黄土高原区土壤为研究对象,通过土壤基本理化参数与土壤水分特征曲线的系列试验,获得了van-genuchten模型参数的数据样本。运用灰色理论对土壤基本理化参数进行了灰色关联度分析,建立了以土壤基本理化参数为输入变量,土壤水分特征曲线van-genuchten模型参数为输出变量的bp神经网络预测模型。研究结果表明:以土壤黏粒含量、粉粒含量、容重、有机质含量、全盐量为输入变量,运用bp神经网络方法对土壤水分特征曲线van-genuchten模型参数进行预测是可行的。所建立的灰色bp神经网络预测模型下,van-genuchten模型参数α与参数n的预测值与检验值平均相对误差都小于5%,建模样本和检验样本都具有较高的精确度。研究成果一方面有助于丰富黄土水力参数的理论研究,另一方面为土壤水分特征曲线的获取提供技术支撑。
在岩土工程中如何准确预测桩基竖向承载力是一件非常重要的事情。针对现有研究存在的不足,基于标准bp神经网络算法,加入一动量因子,建立了修正的bp神经网络模型,对单桩的竖向承载力进行了预测。以镇江市勘察测绘研究院所完成的地质勘查报告为工程背景,以地震波静力触探测试(scptu)测得的4个指标(锥尖阻力、锥侧摩阻力、剪切波速和孔隙水压力)为输入参数,桩基承载力为输出参数。通过与现场静载试验进行比对,得到了相关系数较高的桩基荷载响应曲线。经过与传统预测方法进行比较发现,用修正的bp神经网络算法可以有效预测桩基竖向承载力,精度较高。
职位:高级大数据工程师
擅长专业:土建 安装 装饰 市政 园林
文辑推荐
知识推荐
百科推荐