2025-03-31
提出了一种基于偏最小二乘支持向量机的负荷预测模型。首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测。算例表明,该算法用于短期负荷预测建模速度快,预测精度高,是种行之有效的方法。
偏最小二乘(pls)运算降低电力负荷数据之间的相关性,最小二乘支持向量机(ls-svm)可以获得模型的全局最优预测效果,减少预测过程的运算量。介绍了pls和ls-svm的基本原理,给出了pls-ls-svm建立短期日电力负荷预测模型的过程,并用于某地区2008年的用电日负荷预测,预测的平均相对误差和最大相对误差分别为0.685%和8.8599%。与基于ar(1)模型的预测结果相比,pls-ls-svm模型更高的预测准确性可为短期电力负荷预测提供有效依据。
针对最小二乘支持向量机在电力负荷预测应用中的参数优化问题,将改进粒子群算法引入到最小二乘支持向量机参数中,建立一种新型的电力负荷预测模型(ipso-lssvm)。首先将最小二乘支持向量机参数编码为粒子初始位置向量;然后通过粒子个体之间的信息交流、协作找到最小二乘支持向量机的最优参数,并针对标准粒子群算法的不足进行相应改进;最后将其应用于电力负荷建模与预测,并通过仿真对比实验测试其性能。实验结果表明,ipso-lssvm可以获得较高准确度的电力负荷预测结果,大幅度减少了训练时间,满足电力负荷在线预测要求。
提出一种联合灰色模型(greymodel,gm)和最小二乘支持向量机回归(leastsquaresupportvectorregression,lssvr)算法的电力短期负荷智能组合预测方法。在考虑负荷日周期性的基础上,通过对历史负荷数据的不同取舍,构建出各种不同的历史负荷数据序列,并对每个历史数据序列分别建立能修正β参数的gm(1,1)灰色模型进行负荷预测;采用最小二乘支持向量机回归算法对不同灰色模型的预测结果进行非线性组合,以获取最终预测值。该方法在充分利用灰色模型所需原始数据少、建模简单、运算方便等优势的基础上,结合最小二乘支持向量机所具有的泛化能力强、非线性拟合性好、小样本等特性,提高了预测精度。仿真结果验证了所提出组合方法的有效性和实用性。
通过影响因素分析,确定了软土层厚度、软土层压缩模量、地表硬层厚度、地表压缩模量、路堤高度、路堤顶宽、路基填筑时间和填筑竣工时沉降量等参数对公路软基沉降有影响。对公路软基的观测数据进行分析和取样,输入样本为各参数,输出样本为路堤中线下地表沉降值,利用最小二乘支持向量机的非线性映射和泛化能力,通过训练,建立了公路软基沉降预测模型。研究表明,所建立的模型对公路软基沉降进行预测具有较高的精度,同时具有很好的泛化性能。
基于最小二乘支持向量机回归的基坑变形预测——将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预...
针对在工程实践中,应用单一方法预测建筑物沉降存在着局限性,提出了基于最小二乘支持向量机回归综合单一方法预测沉降量。该方法能综合单一方法的特点,增强了模型的普适性,从而提高了预测精度和预报期次。文中讨论了如何实现和运用该方法,最后通过实例验证了其有效性。
提出了1种基于混沌分析和支持向量回归机的短期空调负荷预测建模方法。通过研究实际空调负荷序列的混沌特性,确定其混沌特征参数并选取支持向量回归机进行预测。支持向量机建模过程使用粒子群算法进行参数寻优。仿真结果表明,空调负荷序列具有一定的混沌特性,使用混沌支持向量机方法的预测精度比单一支持向量机法预测结果eep指标降低了31.4%,预测精度有了明显提升。
提出了基于小波支持向量机(wsvm)与相空间重构(psrt)相结合的电力系统短期负荷预测(stlf)模型。使用小波核函数(wkf)构建相应的wsvm,并且用云遗传算法(cga)对相关参数进行优化。在分析负荷时间序列的混沌特性基础上,对序列进行了psrt,将相空间中的向量点作为wsvm的输入。该方法不考虑气象和节假日等条件,只使用历史负荷数据。仿真结果表明,新算法有较好的精确度和有效性,具有一定的实用价值。
改进的最小二乘法计算固结系数——目前计算固结系数常用的方法是时间对数法和平方根法,这两种方法属于作图法,同时这两种方法仅利用了试样固结试验中沉降量与时间关系曲线中较少的数据,人为因素影响较大,确定固结系数有一定误差,因此,如果利用固结过程中的...
隧道围岩变形预测的最小二乘支持向量机方法——为及时掌握围岩变形趋势并采取措施加以控制,在岭南高速雪家庄隧道施工过程中,采用一种新的时间序列预测模型--最小二乘支持向量机(ls-svm)。介绍了ls.svm的基本原理和该预测模型的具体操作步骤,实践表明,该方...
针对最小二乘支持向量机在利用产生于工业现场的非理想数据集进行建模预测时,稀疏化模型鲁棒性差的问题,提出了一种基于模糊c均值聚类和密度加权的稀疏化方法.首先通过模糊c均值聚类将训练样本划分为若干个子类;然后计算每个子类中各样本的可能贡献度,依次从每个子类中选取具有最大可能贡献度的样本作为支持向量;最后更新每个样本的可能贡献度,继续从各个子集中增选支持向量,直至稀疏化后的模型性能满足要求.仿真结果和磨机负荷实际应用表明,该方法能够兼顾模型在整体样本集和各工况子集上的性能,在实现模型稀疏化的同时,能够显著改善最小二乘支持向量机模型的鲁棒性.
基于最小二乘支持向量机回归的单桩竖向极限承载力预测——基于单桩载荷试验数据,采用最小二乘支持向量机(lssvm)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练lssvm模型,并确定了模型参数.研究结果表明,同常用的bp网络...
针对神经网络存在结构较难确定,训练易陷入局部最小等问题,提出将最小二乘支持向量机和相似搜索用于预测出清电价。该方法对相似搜索得到的相似负荷日的数据用最小二乘支持向量机建立预测模型,采用美国newenglandiso的真实数据做验证,结果表明该方法比bp神经网络有更高的预测精度,是一种有效的预测方法。
为了获得更理想的混凝土强度预测结果,提出一种混沌粒子群算法优化最小二乘支持向量机(lssvm)的混凝土强度预测模型。首先采集混凝土强度数据,并进行归一化处理。然后采用lssvm对混凝土强度与影响因子之间的变化关系进行建模,并采用混沌粒子群算法搜索最优lssvm参数。最后采用具体混凝土强度预测实例对其性能进行分析。结果表明,本文模型可以准确描述混凝土强度与影响因子间的变化关系,提高了混凝土强度预测精度,具有一定的实际应用价值。
为提高水库来水量的预测精度,提出了一种基于最小二乘支持向量机(ls-svm)的来水量预测模型。实例应用结果表明,该模型预测能力强、预测精度高,其预测精度明显高于bp模型,为来水量预测提供了一种可靠、有效的方法。
根据沉降数据的特性,以最小二乘支持向量机为核心技术构建预测模型,提出了一种路基沉降预测的新方法。由于测量误差不可避免,沉降数据通常含有噪声,不宜直接进行拟合,因此首先采用小波分析的方法对原始沉降数据进行降噪预处理,然后馈送到最小二乘支持向量机完成沉降预测。最后用某高速公路实测数据进行了实例分析,并与bp神经网络预测结果进行了对比,计算结果表明,小波分析结合支持向量机的模型有较好的预测精度,将该模型应用于公路软基沉降预测是可行的和值得研究的。
支持向量机(supportvectormachine,svm)作为一种新颖的机器学习方法已成功应用于短期电力负荷预测,然而应用研究发现svm算法性能参数的设置将直接影响负荷预测的精度.为此在对svm参数性能分析的基础上,提出了sce-ua(shuffledcomplexevolution-universityofarizona)支持向量机短期电力负荷预测模型建模的思路及关键参数的选取,在建模过程中引入了径向基核函数,简化了非线性问题的求解过程,并应用sce-ua算法辨识svm的参数.贵州电网日96点负荷曲线预测的实际算例表明,所提sce-ua支持向量机模型不仅克服了svm参数选择的盲目性,而且能提高预测准确率,是一种行之有效的短期电力负荷预测模型.
采用最小二乘支持向量机的方法,利用现场测量的数据,建立水泥粒度软测量模型;通过交叉验证方法优化参数,并用仿真实验验证了该方法的有效性,解决了非线性、小样本、高维数等常规测量方法难以实现的问题,实现了水泥粒度的在线测量。
采用eof时空分解、小波频率分解和最小二乘支持向量机(ls-svm)交叉互补方法,建立夏季500hpa位势高度场的预测模型,用以描绘和表述副热带高压形势场的形态和变化。首先用经验正交函数分解(eof)方法将ncep/ncar再分析资料500hpa位势高度场序列分解为彼此正交的特征向量及其对应时间系数,随后提取前15个主要特征向量的时间系数(方差贡献96.2%),采用小波分解方法将其分解为相对简单的带通信号,再利用ls-svm方法建立各分量信号的预测模型,最后通过小波时频分量重构和eof时空重构,得到500hpa位势高度场的预测结果以及副热带高压形势场的预测。通过对预测模型的试验情况和分析对比,结果表明:基于上述思想提出的算法模型能较为准确地描述500hpa位势高度场的形态分布并预测1~7d的副热带高压活动,对10~15d的副热带高压活动预测结果也有参考意义。
针对工程造价变化的时变性、混沌性,提出一种混沌理论和最小二乘支持向量机的工程造价预测模型.首先收集工程造价历史样本并进行相应的预处理,然后根据混沌理论确定最优延迟时间和嵌入维数,重建工程造价的训练集和测试集,最后用最小二乘支持向量机建立工程造价预测模型,并采用具体建筑工程造价数据进行仿真测试.结果表明,相对其他工程造价预测模型,该模型可以很好地反映工程造价的变化趋势,提高工程造价的预测准确性.
在计算地基沉降量过程中,根据已获得的沉降观测资料,找出具有一定实用价值的沉降规律,可以更准确地确定地基沉降与时间关系。采用线性回归(最小二乘法),确定最佳拟合曲线,从而计算出沉降规律具有十分重要的意义。
论最小二乘法回归分析中的几个问题——针对最小二乘回归方法,分析了水文计算中判断相关是否密切的临界值0.8的来历和使用条件,并指出这一判别标准不具备普遍意义。结合实例论述了回归系数出现错误符号的原因和分析方法。
职位:主任结构工程师
擅长专业:土建 安装 装饰 市政 园林
文辑推荐
知识推荐
百科推荐