2025-04-02
吸收利用制动状态电机回馈再生电能已成为电机系统节能的重要途径。通过分析储能节能系统结构,得出储能系统等效电路;在此基础上建立了用于储能节能系统的双向DC-DC变换器切换系统模型,构造了系统的Lyapunov函数,通过Lyapunov函数推导出系统切换控制律。在储能和放电两种工况下的仿真结果表明,系统能够完全吸收并利用电机回馈电能,保持直流母线电压稳定,实现系统节能。
针对在大功率能量存储场合适用的非隔离双向dc-dc变换器一般存在着开关损耗大、断续工作时寄生振荡等问题,研究了非隔离双向dc-dc变换器的基本原理,为了提高系统的功率密度减少系统损耗,半桥变换器的开关管互补导通,并工作在电感电流断续过零状态以实现软开关。对采用超级电容的双向变换器进行了定量分析,分析并计算了主电路电感与电容参数。同时,通过对双向变换器的控制模型的分析,对超级电容采用恒流充电、恒流恒压放电的策略,实现了双向dc-dc变换器双向工作的稳定。在以上理论分析的基础上,搭建了实验样机进行实验验证,仿真和实验结果验证了本文控制模型分析的正确性。
软开关半桥dc/dc变换器的pwm控制 ? 引言 ? ? ? 半桥dc/dc变换器结构简单,控制方便,非常适用于中小功率场合。 硬开关变换器高频时开关损耗很大,严重影响其效率。软开关技术可降低开 关损耗和线路的emi,提高效率和功率密度,提高开关频率从而减小变换器 体积和重量。传统半桥变换器有两种控制方法,一种是对称控制,一种是不 对称互补控制。本文主要分析实现半桥dc/dc变换器软开关的pwm控制策 略。 ? ? ? 1控制型软开关pwm控制策略 ? ? ? 控制型软开关半桥dc/dc变换器不增加主电路元器件(可增加电感电 容元件以实现软开关条件),通过合理设计控制电路来实现软开关。图1给出 4种控制型软开关半桥dc/dc变换器的pwm控制策略。 ? ? ? ? ? ? ? ? ? ? ? 图1控制型软开关
开关电源dc/dc变换器拓扑结构全集 给出六种基本dc/dc变换器拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏 磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如 果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问 题.要需要其他方法来解决。半桥变换器可以通过不对称控制来实现zvs,也就 是两个管子交替导通,一个占空比为d,另外一个就为1-d.就是所谓的不对称半 桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。 正激变换器 绕组复位正激变换器 lcd复位正激变换器 rcd复位正激变换器 有源钳位正激变换器 双管正激 吸收双正激 有源
开关变换器的模型分析是开关变换器研究的基础.对此,文中引入混杂系统理论,建立了基于切换系统的开关变换器统一模型,该模型不仅适用于dc-ac变换器,而且适用于多种dc-dc变换器.基于该模型的参数矩阵,提出系统lyapunov函数的构造方法,通过构造lyapunov函数得出系统切换律,分析该切换律条件下系统在切换平衡点的稳定性,并总结出建立该统一模型的一般方法和具体步骤.最后,对dc-ac变换器、三电平buck型dc-dc变换器进行仿真研究,验证了所建模型的合理性和建模方法的有效性.
为了获得开关dc-dc变换器的最优数字谷值电流(dvc)控制技术,研究了电感电流连续模式下dvc控制开关dc-dc变换器的工作原理,对比分析了采用前缘、后缘、三角前缘和三角后缘4种调制方式的dvc的占空比算法,并分析了各种算法的稳定性.在此基础上,对dvc控制开关dc-dc变换器的时域特性进行了仿真和试验研究,结果表明,采用后缘调制的dvc控制开关dc-dc变换器具有最优的负载瞬态特性,超调电压为62mv,响应时间为1.118ms.
传统的电压控制模式的并联均流技术易导致系统误报警。为了解决这个问题,采用电流控制代替电压控制模式。文章介绍了电流模式控制的工作原理;进行了系统小信号建模分析;同时设计了系统控制器;最后通过仿真验证了系统分析和设计的合理性。
随着环保问题的日益突出,电动汽车成为近年来迅速发展起来的一种趋势。电动汽车使用动力电池代替传统的燃油作为能源,电池的续航里程成为了限制电动汽车发展的主要瓶颈。因此,在现有电池的技术条件下提高车载电源的效率成为了一个可以有效的提高电池续航里程的办法。本文研究了一种电动大巴dc-dc变换器,对其中核心llc谐振部分进行了详细研究,整个变换器具有效率高,输出纹波低,性能可靠等特点。
设计了一种升压型恒流led驱动芯片,驱动电流可由外接电阻从15~300ma任意调整,输入电压为2.8~5.5v,输出电压最高可达38v。设计固定开关频率为1mhz,应用时只需很小的外接电感即可。相对于其他驱动器电路,该驱动器增加了过压保护电路,无需外接稳压二极管,降低了应用成本。采用上华0.5μmbcd工艺完成芯片的设计,传输效率高达94%。
峰值电流和谷值电流控制开关dc-dc变换器在较宽的电路参数范围内具有对称动力学现象.文中建立了峰值电流和谷值电流控制buck,boost,及buck-boost变换器的统一离散迭代映射模型,并导出了统一的分段光滑迭代映射方程及特征值方程,通过数值仿真得到了占空比变化时的正、逆分岔图和lyapunov指数谱.研究结果表明,峰值/谷值电流型控制开关变换器的分岔图和lyapunov指数具有关于点或轴对称的现象.时域仿真结果验证了数值仿真结果,并进一步表明,随着占空比的变化,峰值/谷值电流型控制开关变换器具有对称动力学现象、对称动力学现象和非对称动力学现象共存、非对称动力学现象.
非线性dc-dc开关电源的建模是设计其闭环控制系统的关键,对于保持系统输出电压的稳定和良好的动态响应特性具有非常重要的影响。选取了状态空间平均法作为建模方法,获取了系统的状态空间表达式及传递函数,在此基础上设计了电流内环、电压外环的双闭环反馈系统,并通过在matlab软件中搭建系统的仿真电路进行仿真,通过仿真曲线验证了模型设计的正确性及双闭环的作用。该方法可用于指导其它dc-dc型开关电源的建模及闭环控制设计。
提出了隔离型dc/dc变换器的zct实现方案。在变压器副边构造了和主功率回路并联的辅助谐振网络,在主开关管关断以前开通主开关管,通过谐振电容的高电压封锁副边整流桥的输出,使变压器原边电流降到零,在全负载范围内实现了主管和辅管的零电流开关。该文以推挽正激变换器为例,进行了详细的理论分析和关键参数的设计,通过原理样机的研制证明了这种方案的优点。最后给出了应用此种思想实现zct的一族变换器拓扑。
分析了电容输入式滤波通信用dc/dc变换器上电时对48v直流母线的浪涌电流冲击、电压跌落及危害,介绍了常规解决办法及存在的问题,提出一种实用解决方案。
采用伪相移式全桥零电压零电流(pps-fb-zvzcs)变换器完成三相功率因数校正(pfc)和输出电压调节双重功能,并能有效抑制直流母线电压。本文对其进行了理论分析、关键参数计算、计算机仿真和实验室样机实验验证。实验表明,其最大输出功率为10kw,功率因数达到0.99,轻载时直流母线电压小于800v。
本文介绍了dc-dc变换电路原理及分类;讨论了三种典型dc-dc变换电路即buck电路、boost电路和buck-boost电路的原理、结构、电压变换关系,并在matlab软件建立仿真模型验证了理论分析的正确性;比较了这三种典型dc-dc变换电路的优缺点。
如今led因为其高功率与高亮度的优势,其应用越来越广泛.led在使用的过程之中需要有很定的电流,随着市场的发展,传统的控制方法已经很难满足低成本的要求,而迟滞控制方法却能够满足要求.为此,在文中介绍了dc/dc控制方法,并就如何实现迟滞控制进行了探讨.
介绍了一种应用在单相ups系统中的新型单开关ac-dc/dc-dc变换电路,该电路由1个功率开关器件和6个二极管组成,能够实现ac/dc整流和dc/dc升压2种功能。在详细分析了该电路运行模式及工作原理的基础上,采用了单周期非线性控制理论对其进行控制,利于2个低速pi调节器对直流母线上的2个电容器电压进行控制,1个高速pi调节器对输入电流进行控制。仿真结果表明,该电路简单可靠,输入功率因数高,电流谐波失真小,可以获得稳定的正负直流母线电压。
(续上期)3.3用lt3743驱动led的典型电路3.4有关lt3743工作时的说明3.4.1电阻rs的选择lt3743采用平均电流模式控制,控制环路有两个独立的基准输入,它们由模拟控制脚ctrl-h和ctrl-l决定。当ctrl-sel脚为低电平时,控制环
详细叙述了dc/dc降压-升压变换器led驱动电路的演变及工作原理,推导了此类电路输出电压与输入电压的关系,并以占空比d表示;介绍了两种典型芯片及其实际使用中的有关知识。
ti生产的lm3481将开关电源的输入电压范围降低到了一个新台阶,最低工作电压仅2.9v。分析和研究采用pwm方法调制的高性能稳压控制芯片lm3481,以其为核心设计制作了一款体积小、功耗低、频率高、输入范围宽的dc/dc升降压型变换器,电路采用sepic拓扑结构。实测表明:lm3481dc/dc变换器特别适合于物联网中的小型太阳能供电系统对3.3v电压的需求,能够很好地将不稳定的太阳能板输出电压转换为稳定电压供负载节点长久使用。lm3481给出了一个比单靠电池供电更优化的电源解决方案。
详细分析了dc/dc降压变换器驱动led电路的工作原理,并推导了输出电压与输入电压的关系和电路参数选择依据的公式;给出一种dc/dc降压变换器芯片实例及其实用电路。
(续上期)2.2sp6648/sp7648芯片led的正向导通压降vf典型值为3.4v,电流为350ma。手电筒通常用2节碱性电池,其供电电压随使用而逐渐降低,范围约为1.8~3.2v。为了延长电池的使用时间,必须采用电感升压型变换器,将其电
介绍了两种用dc/dc升压变换器驱动led的电路,对电路的工作情况进行了详细分析,推导了输出电压与输入电压的关系,并以占空比d表示。最后给出一些芯片实例。
为了能够利用太阳能板输出的小于3v的超低电压,研究和分析了基于sepic电路的ti的一款dc-dc变换器——lm2621,并以其为核心设计并制作了一款体积小、功耗低、频率高、输入范围宽的dc-dc升降压型变换器,lm2621输入电压范围低至1.2v,工作频率高达2mhz,峰值电流可达2a,特别适合于物联网终端节点太阳能供电系统对低电压能量的利用需求,能够很好地将不稳定的微弱太阳能电压转换为稳定电压供负载节点使用。
职位:工程质量安全员
擅长专业:土建 安装 装饰 市政 园林
文辑推荐
知识推荐
百科推荐