选择特殊符号
选择搜索类型
请输入搜索
HD膨胀系列产品为粉红或灰色粉末,加入五大水泥中,可拌制成补偿收缩砼﹑填充性砼。
1、 用膨胀熟料、石膏和膨胀稳定剂共同磨粉而成
2、 配制补收缩砼为取代胶凝材料的8-10%,配制填充性砼掺量为13-15%
3、 抗渗标号>P20,抗冻标号≥200,碱含量小于0.5%
掺量低,膨胀率高,碱含量低,坍落度损失小,强度高
使 用 条 件 选用水泥标号 UEA加入量(%) 砂 浆 42.5R 9~10 32.5R 8~9 高配筋混凝土 42.5R 12~14 32.5R 11~13 低配筋混凝土...
丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。
外观为无色透明块状,颗粒或白色粉末 。真比重:2.21 ;莫氏硬度:6.0 ;PH值:6.0 ;
可用于要求抗裂性好,外观美观的重要建筑物,广泛用于混凝土搅抖站等混凝土机械设备。
玻璃物理性能
玻璃物理性能 种类 遮阳(透光) 传热(U 值) W/m 2 .K 隔声 (Db) 安全性 常规厚度( mm) 常规尺寸 (最 大, mm)遮阳系数 可见光 红外线, 浮法玻璃 ≈90% ≈85% 25-35 0.55, 0.7,1.1,2.0, 2.1, 2.5, 3.0,3.5, 4.0, 5.0,6.0, 8.0, 10,12,15,19 3660×10000 Low-E 玻璃 (高透型) ≈80% ≈30% 3, 4, 5, 6,8, 10, 12, 15,19 2540×3660 Low-E 玻璃 (遮阳型) ≈55% ≈15% 3, 4, 5, 6,8, 10, 12, 15,19 2540×3660 Low-E 玻璃 (双银) ≈73% ≈10% 3, 4, 5, 6,8, 10, 12, 15,19 2540×3660 热反射镀膜玻璃 0.23-0.79 ≈25
材料物理性能答案
)(E k 第一章:材料电学性能 1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 用电阻率 ρ或电阻率σ评价材料的导电能力。 按材料的导电能力(电阻率),人们通常将材料划分为: 2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子, 而原子核及内层 束缚电子作为一个整体形成离子实。 所有离子实的库仑场构成一个平均值的等势电场, 自由 电子就像理想气体一样在这个等势电场中运动。 如果没有外部电场或磁场的影响, 一定温度 下其中的离子实只能在定域作热振动, 形成格波,自由电子则可以在较大范围内作随机运动, 并不时与离子实发生碰撞或散射, 此时定域的离子实不能定向运动, 方向随机的自由电子也 不能形成电流。 施加外电场后, 自由电子的运动就会在随机热运动基础上叠加一个与电场反 方向的平均分量,形
1.通常需要加强养护:材料领域的膨胀剂通常是通过与水反应产生体积增大的晶胞(例如钙矾石)、继而引发膨胀,所以在使用过程中给予足够养护是必要的;
2.膨胀剂不是胶凝材料:强度型复合材料的原料通常分为粗骨料(粗集料),细骨料(细集料),胶凝材料(粘合剂),以及功能性外加剂(例如减水剂、促凝剂缓凝剂等)。膨胀剂通常呈固态粉末状,其用途不在于粘合,不可以替代胶凝材料的作用。
3.关于掺法:通常分内掺、外掺两种。内掺外掺描述的是一种材料用量计算方式,内掺就是“计算配比时把膨胀剂当作胶凝材料看”,外掺就是在原配比之外定量加入,通常需要因此少量增加减水剂用量。
4.国内外现状:当前对该技术应用最为成熟的国家当属德国、日本。国内对膨胀剂技术研究较为广泛的机构主要是中国建筑材料科学研究总院、中科院上海硅酸盐研究所(简称“上硅所”)、清华大学、北京科技大学材料系、武汉科技大学材料与冶金学院 等机构 。
5.主要应用领域:常见于非金属的、无需烧结的复合材料生产工业,例如混凝土与不定形耐火材料。
当下与膨胀剂相关的国家标准主要在混凝土行业,有JC 476-2001《混凝土膨胀剂》(现已废止),现行标准为GB 23439-2009《混凝土膨胀剂》 。在耐火材料及其它行业,暂无国家及行业标准编排颁布。
能引发体积膨胀的材料均可以加工成膨胀剂。膨胀剂的技术核心就是做到周期可控、膨胀率可控。复合材料的强度是从零到有的过程,其收缩主要也出现于前期硬化过程,此时给予一定值域的膨胀,即可带来有利的结果。而到了硬化后期,复合材料强度与结构形态已经趋于稳定,体积膨胀不但无法带来有利结果,反而会引发结构破坏。 综上所述,膨胀剂材料的技术核心不在于膨胀,而在于何时膨胀、多大膨胀。好的膨胀剂必然是周期可控、膨胀率可控的。
用途:较为常见的有混凝土膨胀剂、耐火材料膨胀剂,主要用于补偿材料硬化过程中的收缩,防止开裂。近年根据材料特性,也开发出静态爆破剂,主要通过材料带来的体积膨胀对结构造成破坏。
核心:其技术核心为,可控周期、可控数量的体积膨胀。