选择特殊符号
选择搜索类型
请输入搜索
USB(Universal Serial Bus)总线协议是以Intel为主,并有Compaq,Microsoft,IBM,DEC,Northern Telecom以及日本NEC等共七家公司共同制定的串行接口标准。
数据和控制信号在主机和USB设备间的交换存在两种通道:单向和双向。
USB的数据传送是在主机软件和一个USB设备的指定端口之间。这种主机软件和USB设备的端口间的联系称作通道。总的来说,各通道之间的数据流动是相互独立的。一个指定的USB设备可有许多通道。例如,一个USB设备存在一个端口,可建立一个向其它USB设备的端口,发送数据的通道,它可建立一个从其它USB设备的端口接收数据的通道。
USB包含四种基本的数据传输类型:
控制传输:设备连接时用来对设备进行设置,还可对指定设备进行控制。
批量传输:大批量产生并使用的数据,在传输约束下,具有很广的动态范围。
中断传输:用来描述或匹配人的感觉或对特征反应的回馈。
同步传输:由预先确定的传送延迟来填满预定的USB带宽。
USB总线属于一种轮询式总线,主机控制端口初始化所有的数据传输。每一总线动作最多传送三个数据包,包括令牌(Token)、数据(Data)、联络(HandShake)。
按照传输前制定好的原则,在每次传送开始时,主机送一个描述传输动作的种类、方向、USB设备地址和终端号的USB数据包,这个数据包通常被称为令牌包(TokenPacket)。USB设备从解码后的数据包的适当位置取出属于自己的数据。数据传输方向不是从主机到设备就是从设备到主机。
在传输开始时,由标志包来标志数据的传输方向,然后发送端开始发送包含信息的数据包或表明没有数据传送。接收端也要相应发送一个握手的数据包表明是否传送成功。发送端和接收端之间的USB数据传输,在主机和设备的端口之间,可视为一个通道。USB中有一个特殊的通道一缺省控制通道,它属于消息通道,设备一启动即存在,从而为设备的设置、状态查询和输入控制信息提供一个入口。
1can是两根线,2can线上有两个状态,a隐性状态,两线电压2.5V,表示位为1。b显性状态,两线电压:低1.5V,高3.5V,压差2V;表示位为0;3以上2里的电压叫差分线路,为的是增加抗干扰性能...
GHOST版系统驱动是集成安装,更新或安装驱动很麻烦的大多数无法安装。把驱动程序文件夹删掉,用驱动精灵全新安装所有驱动。
DSP芯片TMS320F2812 DSP片外扩展 64K * 16位SRAM(基本配置),最大可扩展到512K * 16位。内部RAM不够用时,用来扩充内存,当然是并行的。
通用串行总线(USB)使用的USB 3.0电缆的研发
回顾了通用串行总线(USB)发展的历程,论述了随着电脑科技和数码技术的发展,原USB 2.0标准规定的480 Mb传输速率已不能满足使用要求,于是2008年底推出了最高传输速率为5 Gb的USB 3.0标准,因此,有必要对适应于该标准的USB 3.0电缆进行研究。提出了USB 3.0电缆的技术要求,论述了产品结构设计、材料选用及制造技术。
USB转CAN总线控制系统的设计
无论是在工业领域还是汽车应用中CAN总线以其可靠性高、配置灵活等优点成为首选。为了实现CAN总线通讯的快速调试,本文设计了一种USB转CAN总线控制装置,该装置配备了USB和CAN总线数据处理芯片,可以进行USB和CAN总线数据的相互转换。在PC机上,利用Labwindows/CVI软件设计控制界面,通过该控制界面可以实现CAN总线指令和数据的发送与接收。
USB OTG标准在完全兼容USB2.0标准的基础上,增添了电源管理(节省功耗)功能,它允许设备既可作为主机,也可作为外设操作(两用OTG)。OTG两用设备完全符合USB2.0标准,并可提供一定的主机检测能力,支持主机通令协议(HNP)和对话请求协议(SRP)。在OTG中,初始主机设备称为A设备,外设称为B设备。可用电缆的连接方式来决定初始角色。图2所示是用第5个ID脚确定默认主机的示意图,两用设备使用新型mini-AB插座,从而使mini-A插头、mini-B插头和mini-AB插座增添了第五个引脚(ID),以用于识别不同的电缆端点。mini-A插头中的ID引脚接地,mini-B插头中的ID引脚浮空。当OTG设备检测到接地的ID引脚时,表示默认的是A设备(主机),而检测到ID引脚浮空的设备则认为是B设备(外设)。系统一旦连接后,OTG的角色还可以更换。主机与外设采用新的HNP,A设备作为默认主机半提供VBUS电源,并在检测到有设备连接时复位总线、枚举并配置B设备。OTG标准为USB增添的第二个新协议称为对话请求协议(SRP)。SRP允许B设备请求A设备打开VBUS电源并启动一次对话。一次OTG对话可通过A设备提供VBUS电源的时间来确定(注:A设备总是为VBUS供电,即使作为外设)。也可通过A设备关闭VBUS电源来结束一会话以节省功耗,这在电池供电产品中是非常重要的。例如,在两台蜂窝电话通过连接互相交换信息时,一台连接在电费的mini-A端,是A设备,默认为主机。另一台是B设备,默认为外设。当在不需要USB通信时,A设备可以关闭VBUS线,此时B设备就会检测到该状态并进入低功耗模式。
CAN总线的物理层是将ECU连接至总线的驱动电路。ECU的总数将受限于总线上的电气负荷。物理层定义了物理数据在总线上各节点间的传输过程,主要是连接介质、线路电气特性、数据的编码/解码、位定时和同步的实施标准。
BOSCH CAN基本上没有对物理层进行定义,但基于CAN的ISO标准对物理层进行了定义。设计一个CAN系统时,物理层具有很大的选择余地,但必须保证CAN协议中媒体访问层非破坏性位仲裁的要求,即出现总线竞争时,具有较高优先权的报文获取总线竞争的原则,所以要求物理层必须支持CAN总线中隐性位和显性位的状态特征。在没有发送显性位时,总线处于隐性状态,空闲时,总线处于隐性状态;当有一个或多个节点发送显性位,显性位覆盖隐性位,使总线处于显性状态。
在此基础上,物理层主要取决于传输速度的要求。从物理结构上看,CAN节点的构成如图7-8所示。在CAN中,物理层从结构上可分为三层:分别是物理信号层(Physical Layer Signaling,PLS)、物理介质附件(Physical MediaAttachment,PMA)层和介质从属接口(Media Dependent:Inter-face,MDI)层。其中PLS连同数据链路层功能由CAN控制器完成,PMA层功能由CAN收发器完成,MDI层定义了电缆和连接器的特性。目前也有支持CAN的微处理器内部集成了CAN控制器和收发器电路,如MC68HC908GZl6。PMA和MDI两层有很多不同的国际或国家或行业标准,也可自行定义,比较流行的是ISOll898定义的高速CAN发送/接收器标准。
CAN网络上的节点不分主从,任一节点均可在任意时刻主动地向网络上其他节点发送信息,通信方式灵活,利用这一特点可方便地构成多机备份系统,CAN只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式传送接收数据,无需专门的"调度"。 CAN的直接通信距离最远可达10km(速率5kbps以下);通信速率最高可达1Mbps(此时通信距离最长为40m)。 CAN上的节点数主要决定于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2.0A),而扩展标准(CAN2.0B)的报文标识符几乎不受限制。
CAN的数据链路层是其核心内容,其中逻辑链路控制(Logical Link control,LLC)完成过滤、过载通知和管理恢复等功能,媒体访问控制(Medium Access control,MAC)子层完成数据打包/解包、帧编码、媒体访问管理、错误检测、错误信令、应答、串并转换等功能。这些功能都是围绕信息帧传送过程展开的。
允许外设在开机状态下热插拔,最多可串接下来127个外设,传输速率可达480MB/S,P它可以向低压设备提供5伏电源,同时可以减少PC机I/O接口数量。