选择特殊符号
选择搜索类型
请输入搜索
ZYC自力式压差控制阀是一种用于消防用水与生活用水并联的供水系统中,用来调配供水方向的阀门。当火灾发生时,消防急需大量用水,立即切断生活用水,确保足够的消防用水;当消防停止用水压力减小时,阀门自动打开,呈常开状态,恢复生活供水。该阀使系统无须另设专门的消防单独供水管网,大大地节约了建设成本和用水量。
( 1 )工程式中应用的水力控制阀是经过制造厂检验合格,各种标识齐全,技术资料符合要求的产品。
( 2 )根据功能要求,选择阀门种类,再根据管道输送介质、温度、建筑标准和业主 要要求 等,确定阀门的阀体和密封部位的材质。常用的阀 体材料有铸铁 、铜铁、铜、塑料等。常用的密封面和衬里材料有铜合金、塑料、钢、硬质合金、橡胶等。阀 体材料应与管道材料相匹配。
( 3 )阀门的公称压力有0.6、1.0、1.6、2.5和4.0MPa等不同级别,管道输送的介质,其工作压力应小于阀门的公称压力值。
( 4 )工程中水力控制阀的设置应当有足够的空间,以便管理、操作、安装和维修,并应符合管路对阀门的要求。
( 5 )管路采用法兰连接时,应采用法兰连接的水力控制阀;管路采用沟槽式连接时,应采用沟槽式连接的水力控制阀。
( 6 )水利控制阀应设置在介质单向流动的管路上。
( 7 )水利控制阀主阀体上的箭头方向必须与管路系统流向一致。
( 8 )接水力控制阀管段不 应有气堵 、气阻现象。在管网最高位置 等存气段 应设置自动排气阀。
( 9 )阀门水平安装时,阀盖、阀杆应朝上。垂直安装时,阀盖、阀杆应朝外。
( 10 )阀门安装前应做强度和严密性试验。
( 11 )阀门的强度和严密性试验应符合以下规定。
A、阀门的强度试验压力为公称压力的1.5倍;
B、阀门的严密性试验压力为公称压力的1.5倍;
C、试验压力在试验持续时间内应保持不变,且壳体填料及阀瓣密封面无渗漏;
D、阀门试验持续时间按上表。
ZYC自力式压差控制阀是一种用于消防用水与生活用水并联的供水系统中,用来调配供水方向的阀门。当火灾发生时,消防急需大量用水,立即切断生活用水,确保足够的消防用水;当消防停止用水压力减小时,阀门自动打开,呈常开状态,恢复生活供水。该阀使系统无须另设专门的消防单独供水管网,大大地节约了建设成本和用水量。阀门控制灵敏度高,安全可靠,调试简便,使用寿命长。
水利控制阀就是水压控制的阀门,水力控制阀由一个主阀及其附设的导管﹑导阀﹑针阀﹑球阀和压力表等组成。根据使用目的﹑功能及场所的不同可演变成遥控浮球阀﹑减压阀﹑缓闭止回阀﹑流量控制阀﹑泄压阀﹑水力电动控制阀、水泵控制阀等。
水利控制阀是一种利用水自润式阀体,无须另加机油润滑,如遇主阀内零部件损坏时,请按下列指示进行拆卸。(注:内阀内一般消耗损伤品为膜片和 ...
但在工程中应用水力控制阀时,还存在一定误区,如阀的适用条件,阀的设计选用要求,安装要点等,为此,本文拟以 CECS 标准《水力控制阀应用设计规程》为基础,结合本人的体会来阐述上述诸方面的问题。
压差控制阀一般安装在用户入口回水管上,阀下导压管与入口处供水管相接,P1为供水压力,P2为阀内回水压力,P3为阀外回水压力。 设阀内系统压差△Pi(△Pi=P1-P2)为阀门...
压差控制阀一般安装在用户入口回水管上,阀下导压管与入口处供水管相接,P1为供水压力,P2为阀内回水压力,P3为阀外回水压力。 设阀内系统压差△Pi(△Pi=P1-P2)为阀门压差设定值时,阀门下膜室压...
你好哦。主要是杠杆的原理,利用阀内的压力控制阀的开度。最简单的就的家里煤气罐上的减压阀,你把它拆开看下就一切都明白了。反正拆完后装好照样可以用的。希望回答能帮助到你。
自力式压差控制阀的功能全解
自力式压差控制阀的功能全解
ZYC-16型自力式压差控制阀的产品类型是控制阀.
ZYC型自力式压差控制阀,是一种利用介质自身的压力变化进行自我控制而保持流经该被控系统介质压差不变的节能产品。适用于供暖方式采用双管系统的压差控制,保证系统的压差基本不变,减低噪音,平衡阻力,消除热网的水力失调。 |
二.主要外型尺寸
DN(mm) | 连接方式 | L(mm) | H | H1 | 流量m3/h | 适用介质 | 介质温度 | 主要零件材料 |
15 | 螺纹 | 110 | 72 | 98 | 0.2-1 | 水 | 0~100℃s | 阀体,上盖和下盖为铸造黄铜,阀芯为铜,膜片为尼龙强化橡胶,弹簧为不锈钢 |
20 | 110 | 72 | 98 | 0.3-1.5 | ||||
25 | 115 | 82 | 102 | 0.5-2 | ||||
32 | 法兰 | 160 | 91 | 94 | 1-4 | |||
40 | 200 | 147 | 112 | 1.5-6 | ||||
50 | 215 | 120 | 112 | 2-8 | ||||
65 | 220 | 125 | 120 | 3-12 | ||||
80 | 275 | 188 | 133 | 5-20 | ||||
100 | 290 | 208 | 160 | 10-52 | ||||
125 | 310 | 226 | 175 | 15-45 | ||||
150 | 350 | 258 | 195 | 30-80 | ||||
200 | 430 | 301 | 230 | 40-180 | ||||
250 | 520 | 367 | 265 | 100-300 | ||||
300 | 635 | 430 | 300 | 150-500 | ||||
350 | 670 | 504 | 340 | 200-700 |
【学员问题】自力式压差控制阀的应用?
【解答】前言:通常所说的自力式压差控制阀,其功能是控制网路中某个支路工某个用户的压差,使之基本恒定,而自身消耗的压差则是变化的,正是通过调整自身的开度,来调度自身所消耗的压差,以实现被控对象的压差恒定。这种压差控制阀在供热空调工程已有了较多的应用,尤其是在分户计量供热工程中被广泛采用,所以被大家熟悉和了解。本文先容一种功能与其不同的自力式压差控制阀,它的作用是控制自身的压差,因而可称为自身压差控制阀。同时,探讨它在热通工程中的应用。
一 结构与工作原理
这里以ZY47-16C型自力式压差控制阀为例,先容自身压差控制阀的工作原理。图1为ZY47-16C型自力式压差控阀的结构与工作原理示意图。弹簧、感压膜和阀杆固结在一起,通过导压管将出口压力P2导进感压膜上部的密封腔,感压膜下部为进口压力P1.根据P1-P2的设定值△Ps(以下简称设定压差)确定弹簧的预压缩量,即使弹簧的弹力与设定压差条件下感压膜对弹簧的作用力相等。并按照阀塞的行程远小于弹簧预压缩量的原则选择弹簧。这样就使得在阀门任一开度的平衡状态,阀的进、出口压差△P与设定压差△Ps近似相等。严格地说,开度不同,平衡状态的△P是不相等的。显然,随差开度的增大,平衡状态的△P是增大的。但通过对弹簧的选择,完全可以在阀塞的全行程内,将平衡状态的△P相对于△Ps的偏离控制在一定的范围(比如5%)之内。
自力式自身压差控制阀在系统中的工作可分为两种情况进行说明:1)当前状态为封闭。若阀前后压差△P小于设定压差△Ps,则继续封闭,这时就是一个关断阀。若△P大于△Ps,则感压膜克服弹簧的弹力,带动阀塞上升,阀门开启;达到平衡状态时,进、出口压差△P近似回落到设定压差△Ps.2)当前状态为开启。若系统稳定运行,进、出口压差△P近似为设定压差。若由于系统工况的改变,使△P增大,则阀门开大,流量增大;达到平衡状态时,△P又近似回落到△Ps.阀门为最大开度时,出现△P大于△Ps的情况,阀门不再具有调控压差的能力。若由于系统工况的改变,使进、出口压差△P小于△Ps,则阀门关小,流量减小,达到平衡状态时,△P又近似上升到△Ps.直至阀门封闭时,出现△P小于△Ps的情况,就不再具有调控压差的能力,而成为一个关断阀。简而言之,自力式自身压差控制阀在封闭状态时,△P必须大于△Ps才能开启;在开启状态时,可自动调整开度,保持阀门前后的压差基本恒定。
二 自身压差控制阀在热通工程中的应用
2.1在保护冷热源方面的应用
近年来,在供热工程中,燃汕和燃气机组有了较多的应用。由于对供热实行计量收费,用户自主调节流量的意识大大增强,加上生活用热水在一天之内用量变化较大,使得供热系统的流量有很大的变化范围。若流量过小,可能造成燃汕和燃气机组的局部沸腾,进而使机组受到破坏。对于空调系统中的冷水机组,假如冷冻水量太小,也可能造成蒸发排管局部冻结,进而使机组受到破坏。对于以上两种情况,可如图2所示,在旁通管路上,装设自力式自身压差控制阀。由于用户调节等原因使系统流量减小,压差控制阀前后的压差△P就会随之增大,当△P大于设定压差△Ps时,压差控制阀开启,增大通过冷热源的流量,保障机组安全运行。在压差控制阀为开启状态时,可始终保持阀前后的压差基本恒定。而通过阀的流量则与用户系统的流量呈相反的变化。即用户系统的流量减小,通过压差控制阀的流量就会增大;反之,用户系统的流量增大,则通过压差控制阀的流量减小。这样就可保证通过冷热源的流量不致有太大的变化,既保护了冷热源,又进步了机组运行的稳定性。
保护冷热源的传统方式是在旁通管路上装设电动压差控制阀。当系统流量减小,使电动阀前后压差大于设定压差时,电信号驱动电动阀开启,使冷热源机组维持必须的最小流量。但电动压差控制阀由于对电源和传递电信号的线路的依靠,因此可靠程度不如自力式压差控制阀。另外,价格也高于后者。所以,在保护冷热源方面,完全可以用自力式自身压差控制阀替换传统的电动控制阀。
2.2在集中供热系统中的应用
在集中供热工程中经常出现这样的情况:供热流用户有低建筑(较矮的建筑或地势较低的建筑)和高建筑(高层建筑或地势较高的建筑),若热网的压力工况满足低建筑的散热器不被压坏的要求,高建筑就会出现倒空现象;若热网的压力工况满足高建筑不出现倒空现象,则低建筑的散热器承受的压力就会超过其承压能力。借助自身压差控制阀往往可以解决这个矛盾。
是一个地势高差悬殊,热源位于低处的例子。顺着地势特点,在供水管路适当位置设置加压水泵,在回水管路适当位置装设自力式自身压差控制阀。在系统运行过程中,压差控制阀前后的压差可保持基本恒定。这样就将网路的动水压线分为两个部分,前部的动水压线相对较低,可满足低建筑的散热器不被坏的要求;后部的动水压线相对较高,可满足高建筑不发生倒空现象的要求。在系统停止运行时,整个网路的测压管水头有达到一致的趋势,而压差控制阀则通过减小开度竭力维持原有的压差基本不变,直至压差控制阀的封闭。这时,压差控制阀与供水管路上的止回阀一起,将网路后部与前部隔离开来。网路前部的静水压线由于压差控制阀配装在一起的定压补水泵保证。
相反,若地势相差悬殊,而热源在高处,则如图5所示,顺着地势特点,在供水管路适当位置装设自身压差控制阀,在回水管路适当位置设加压水泵。系统运行时,压差控制阀前后的压差可保持基本恒定,这样就使网路后部的动水压线相对较低,可满足低建筑的散热器不被压坏的要求;网路前部的动水压线相对较高,可满足高建筑不发生倒空现象。系统停止运行时,压差控制阀自动封闭,与回水管路上的止回阀一起,将网路后部与前部隔离开来。网路前部的静水压线由设置在热源的补水定压装置保证,网路后部的静水压线则由连通前、后部的补水管路上的补水调节阀保证。
三 结论
自力式自身压差控制阀为封闭状态时,若阀前、后的压差小于设定压差,则继续封闭;若阀前、后的压差大于设定压差,则阀门开启。为开启状态时,可自动调整开度,使阀前、后的压差基本恒定。
自力式自身压差控制阀可用于对冷热源的保护,与传统的电动控制保护相比,有控制可靠、价格低廉的优点。
自力式自身压差控制阀可用于解决集中供热工程中高建筑与低建筑高度相差悬殊所产生的对压力工况要求不同的矛盾。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
1、采用自力式压差控制阀,为分户计量提供了必要条件。众所周知,分户计量按热收费提高了热用户的自主权,更好利用自由热节约能源,假如系统不装置自力式压差控制阀,当用户调节时,流量只能跑到其他用户处,另外,散热器温控阀的最大承压25Kpa,不加自力式压差控制阀温控阀压差过大会发出噪音的危险。
2、采用自力式压差阀配备变频水泵,是既节能又经济的运行方式。
3、采用自力式压差控制阀为控制提供了很好的工作环境,在换热器前加装自力式压差控制阀,可防止换热器内水流速过大,超过允许降压,延长其寿命。在自力式温度控制阀、流量控制阀、平衡阀、散热器温控阀前自力式压差控制阀有三个作用:
(1)保证工作压差不超过最大允许压差;
(2)保证通过流量限制在最大流量之内;
(3)保证不产生噪音和气蚀现象。
电动阀前加自力式压差控制阀保证受外网波动给电动阀造成的频繁动作,减少电动阀由信号迟到造成的误动作,营造一个相对舒适的环境。
4、采用自力式压差控制阀给一次系统的高效率运行带来可靠的保证。
5、采用自力式压差控制阀对水泵控制,可以节省很大费用。用于供热系统中循环水泵在系统流量减小时,扬程会增大,同时,当管阻随流量减小,以平方关系降低时,克服阻力所需的压头大大下降。过高压头不仅导致控制阀产生噪音,控制性能变差和振荡等问题,同时对水泵的运行也带来了不必要的电力消耗,当管阻随流量变化以平方管线变化时,水泵耗电量随流量变化成立方关系变化,因此对水泵进行控制可以节省费用。
6、采用自力式压差控制阀,为系统的动态平衡调节提供了可靠的保证。分户计量后,当某用户因不付费给用户关闭,如果没有自力式压差控制阀,被关闭或调节用户的流量就会强加给其他用户,这样就造成了其他用户多付费甚至造成立关与立管之间的不平衡。当使用自力式压差控制阀后,通过压差控制阀的动作流量就不会强加给其他用户,立管与立管的不平衡。当室外温度或其他自由热给用户,用户通过温控阀的控制,可同时都在调节而且住在朝阳方向,要比住在朝阴方向的动作要大一些,这样就需要通过自力式压差控制来解决这个问题。