选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

半导体激光

半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续输出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是生产量最大的激光器。

半导体激光基本信息

半导体激光工作原理及特点

半导体激光器工作原理是激励方式。利用半导体物质,即利用电子在能带间跃迁发光。用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。半导体激光器优点是体积小、重量轻、运转可靠、耗电少、效率高等。 封装技术 技术介绍 半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作、输出可见光的功能。既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器

查看详情

半导体激光造价信息

  • 市场价
  • 信息价
  • 询价

激光喷泉

  • 品种:激光喷泉;规格型号:12KW;
  • 锦泉
  • 13%
  • 河北锦泉园林景观工程股份有限公司
  • 2022-12-08
查看价格

激光喷泉

  • 24V,9W
  • 13%
  • 深圳凡尊照明电器有限公司
  • 2022-12-08
查看价格

激光投影机

  • 700W
  • 梵朗
  • 13%
  • 深圳市梵朗照明科技有限公司江门办事处
  • 2022-12-08
查看价格

激光灯FPN

  • 标准Art-net协议,多通道扩展、8端口DMX512输出,可外接MA控台,19寸机架式安装;
  • 佛山银河照明
  • 13%
  • 佛山市银河兰晶科技股份有限公司
  • 2022-12-08
查看价格

激光灯RPU

  • 1×WAN口;4×LAN口;嵌入式Linux操作系统;输出标准Art-net协议;可带载240域;专业舞台灯光控制系统
  • 大峡谷
  • 13%
  • 大峡谷照明系统(苏州)股份有限公司
  • 2022-12-08
查看价格

自发电一焊机

  • 305A
  • 台班
  • 韶关市2010年8月信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2011年3季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 广州市2010年3季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 汕头市2010年2季度信息价
  • 建筑工程
查看价格

二氧化碳气保护焊机

  • 电流250A
  • 台班
  • 广州市2010年2季度信息价
  • 建筑工程
查看价格

半导体泵浦全固态激光

  • 1.名称:半导体泵浦全固态激光2.激光功率:红光(638nm)/200mW
  • 2套
  • 3
  • 中档
  • 含税费 | 含运费
  • 2022-04-12
查看价格

半导体陶瓷

  • 将面板旋转到任一半导体上,旋转按钮缩小、放大,观察陶瓷.
  • 1项
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-10-24
查看价格

半导体陶瓷

  • 将面板旋转到任一半导体上,旋转按钮缩小、放大,观察陶瓷.
  • 1项
  • 1
  • 高档
  • 不含税费 | 含运费
  • 2022-09-14
查看价格

半导体陶瓷

  • 将面板旋转到任一半导体上,旋转按钮缩小、放大,观察陶瓷.
  • 1项
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-09-16
查看价格

半导体陶瓷

  • 将面板旋转到任一半导体上,旋转按钮缩小、放大,观察陶瓷.
  • 1项
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2022-08-15
查看价格

半导体激光特点

激光二极管的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。

通常激光器封装形式主要包括单管、Bar条、阵列(Stack)、光纤耦合模块四种形式,其中光纤耦合模块主要用作光纤激光器的泵浦光源。

查看详情

半导体激光半导体激光器

半导体激光构造及材料

半导体激光器在基本构造上,它属于半导体的P-N接面,但激光二极管是以金属包层从两边夹住发光层(有源层),是“双异质结接合构造”。而且在激光二极管中,将界面作为发射镜(谐振腔)使用。在使用材料方面,有镓(Ga)、砷(As)、铟(In)、磷(P)等。此外在多量子阱型中,也使用Ga·Al·As等。

由于具有条状结构,即使是微小电流也会增加活性区域的电子数反转密度,

优点是激发容易呈现单一形式,而且,其寿命可达10~100万小时。

半导体激光条件

半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:

  1. 增益条件:建立起激射媒质(有源区)内载流子的反转分布。在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现,将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

  2. 要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F-p腔(法布里一拍罗腔)半导体激光器可以很方便地利用晶体的与P一n结平面相垂直的自然解理面构成F一P腔。

  3. 为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件。当激光器达到阀值,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出。可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程对于新型半导体激光器而言,人们公认量子阱是半导体激光器发展的根本动力。量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已尝试用自组织结构在各种材料中制作量子点,而GaInN量子点已用于半导体激光器。另外,科学家也已经做出了另一类受激辐射过程的量子级联激光器,这种受激辐射基于从半导体导带的一个次能级到同一能带更低一级状态的跃迁,由于只有导带中的电子参与这种过程,因此它是单极性器件。

查看详情

半导体激光常见问题

查看详情

半导体激光器

构造及材料

半导体激光器在基本构造上,它属于半导体的P-N接面,但激光二极管是以金属包层从两边夹住发光层(有源层),是"双异质结接合构造"。而且在激光二极管中,将界面作为发射镜(谐振腔)使用。在使用材料方面,有镓(Ga)、砷(As)、铟(In)、磷(P)等。此外在多量子阱型中,也使用Ga·Al·As等。

由于具有条状结构,即使是微小电流也会增加活性区域的电子数反转密度,

优点是激发容易呈现单一形式,而且,其寿命可达10~100万小时。

工作原理

半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:

增益条件:建立起激射媒质(有源区)内载流子的反转分布。在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现,将电子从能量较低的价带激发到能量较高的导带中去.当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F-p腔(法布里一拍罗腔)半导体激光器可以很方便地利用晶体的与P一n结平面相垂直的自然解理面构成F一P腔.为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出.可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程对于新型半导体激光器而言,人们目前公认量子阱是半导体激光器发展的根本动力.量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已尝试用自组织结构在各种材料中制作量子点,而GaInN量子点已用于半导体激光器.另外,科学家也已经做出了另一类受激辐射过程的量子级联激光器,这种受激辐射基于从半导体导带的一个次能级到同一能带更低一级状态的跃迁,由于只有导带中的电子参与这种过程,因此它是单极性器件.

特点

激光二极管的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。

通常激光器封装形式主要包括单管、Bar条、阵列(Stack)、光纤耦合模块四种形式,其中光纤耦合模块主要用作光纤激光器的泵浦光源。

应用

半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。局域网,1300nm -1550nm波长的半导体激光器适用于1OGb局域网系统.半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术.半导体激光器在激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆、自动控制、检测仪器等方面获得了广泛的应用,形成了广阔的市场。1978年,半导体激光器开始应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电路平面工艺组成光电子系统.由于半导体激光器有着超小型、高效率和高速工作的优异特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一起,它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设备的光祸合等方面有重要用途.半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.半导体激光器再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的发展.因此可以说,没有半导体激光器的出现,就没有当今的光通信.GaAs/GaAlA。双异质结激光器是光纤通信和大气通信的重要光源,如今,凡是长距离、大容量的光信息传输系统无不都采用分布反馈式半导体激光器(DFB一LD).半导体激光器也广泛地应用于光盘技术中,光盘技术是集计算技术、激光技术和数字通信技术于一体的综合性技术.是大容t.高密度、快速有效和低成本的信息存储手段,它需要半导体激光器产生的光束将信息写人和读出.

查看详情

半导体激光应用

半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于Gh局域网,1300nm -1550nm波长的半导体激光器适用于1OGb局域网系统。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。半导体激光器在激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆、自动控制、检测仪器等方面获得了广泛的应用,形成了广阔的市场。1978年,半导体激光器开始应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电路平面工艺组成光电子系统。由于半导体激光器有着超小型、高效率和高速工作的优异特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一起,它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设备的光祸合等方面有重要用途。半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源。半导体激光器再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的发展。因此可以说,没有半导体激光器的出现,就没有当今的光通信。双异质结激光器是光纤通信和大气通信的重要光源,如今,凡是长距离、大容量的光信息传输系统无不都采用分布反馈式半导体激光器(DFB一LD),半导体激光器也广泛地应用于光盘技术中,光盘技术是集计算技术、激光技术和数字通信技术于一体的综合性技术。

查看详情

半导体激光工作原理

半导体激光器工作原理是激励方式。利用半导体物质,即利用电子在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。

半导体激光器优点是体积小、重量轻、运转可靠、耗电少、效率高等。

半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作、输出可见光的功能。既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器。 2100433B

查看详情

半导体激光文献

多芯片半导体激光器光纤耦合设计 多芯片半导体激光器光纤耦合设计

多芯片半导体激光器光纤耦合设计

格式:pdf

大小:343KB

页数: 未知

应用ZEMAX光学设计软件模拟了一种多芯片半导体激光器光纤耦合模块,将12支808nm单芯片半导体激光器输出光束耦合进数值孔径0.22、纤芯直径105μm的光纤中,每支半导体激光器功率10 W,光纤输出端面功率达到116.84W,光纤耦合效率达到97.36%,亮度达到8.88MW/(cm2·sr)。通过ZEMAX和ORIGIN软件分析了光纤对接出现误差以及单芯片半导体激光器安装出现误差时对光纤耦合效率的影响,得出误差对光纤耦合效率影响的严重程度从大到小分别为垂轴误差、轴向误差、角向误差。

半导体激光器输出特性的影响因素 半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素

格式:pdf

大小:343KB

页数: 5页

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应 用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的 输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的, 这个能 量近似等于禁带宽度 Eg(eV)。 hf = Eg f (Hz) 和λ(μm)分别为发射光的频率和波长 且c=3×108m/s, h=6.628 ×10- 34 J ·s, leV=1.60 × 10- 19 J 得 决定半导体激光器输出光波长的主要因素是 半导体材料 和温度 。 不同半导体材料有不同的禁带宽度 Eg,因而有不同的发射波长 λ:GaAlAs-GaAs 材料 适用于 0.85 μm波段, InGaAsP-InP材料适用于 1.3~1.55 μm波段。

红外半导体激光材料简介

红外半导体激光材料是指辐射波长位于红外波段的半导体激光材料 。

查看详情

红外半导体激光材料半导体激光器

激光器有固体激光器(如红宝石激光器。将光能转化光能,波长不一样)、气体激光器(如,二氧化碳激光器)、化学激光器(化学能转化为光能)、半导体激光器(电能转化为光能)。激光红外灯属于半导体激光器是利用半导体材料,在空穴和电子复合的过程中电子能级的降低而释放出光子来产生光能的,然后光子在谐振腔间产生谐振规范光子的传播方向而形成激光。

半导体激光器的尺寸小,激光器的尺寸在毫米量级,发光芯片在百微米量级;半导体激光器电能到光能的转化效率高,电光转换效率至少80%, LED灯电光转换率最高只能达到20% 。2100433B

查看详情

半导体激光器应用情况

应用介绍

半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。局域网,1300nm -1550nm波长的半导体激光器适用于1OGb局域网系统.半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术.半导体激光器在激光测距、激光雷达、激光通信、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆、自动控制、检测仪器等方面获得了广泛的应用,形成了广阔的市场。1978年,半导体激光器开始应用于光纤通信系统,半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电路平面工艺组成光电子系统.由于半导体激光器有着超小型、高效率和高速工作的优异特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一起,它在光通信、光变换、光互连、并行光波系统、光信息处理和光存贮、光计算机外部设备的光祸合等方面有重要用途.半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.半导体激光器再加上低损耗光纤,对光纤通信产生了重大影响,并加速了它的发展.因此可以说,没有半导体激光器的出现,就没有当今的光通信.GaAs/GaAlA。双异质结激光器是光纤通信和大气通信的重要光源,如今,凡是长距离、大容量的光信息传输系统无不都采用分布反馈式半导体激光器(DFB一LD).半导体激光器也广泛地应用于光盘技术中,光盘技术是集计算技术、激光技术和数字通信技术于一体的综合性技术.是大容t.高密度、快速有效和低成本的信息存储手段,它需要半导体激光器产生的光束将信息写人和读出.

常用器件

下面我们具体来看看几种常用的半导体激光器的应用:

量子阱半导体大功率激光器在精密机械零件的激光加工方面有重要应用,同时也成为固体激光器最理想的、高效率泵浦光源.由于它的高效率、高可*性和小型化的优点,导致了固体激光器的不断更新.

在印刷业和医学领域,高功率半导体激光器也有应用.另外,如长波长激光器(1976年,人们用Ga[nAsP/InP实现了长波长激光器)用于光通信,短波长激光器用于光盘读出.自从NaKamuxa实现了GaInN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝光面发射激光器的应用更广泛.蓝绿光半导体激光器用于水下通信、激光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清晰度彩色电视机中.总之,可见光半导体激光器在用作彩色显示器光源、光存贮的读出和写人,激光打印、激光印刷、高密度光盘存储系统、条码读出器以及固体激光器的泵浦源等方面有着广泛的用途.量子级联激光的新型激光器应用于环境检测和医检领域.另外,由于半导体激光器可以通过改变磁场或调节电流实现波长调谐,且已经可以获得线宽很窄的激光输出,因此利用半导体激光器可以进行高分辨光谱研究.可调谐激光器是深入研究物质结构而迅速发展的激光光谱学的重要工具大功率中红外(3.5lm)LD在红外对抗、红外照明、激光雷达、大气窗口、自由空间通信、大气监视和化学光谱学等方面有广泛的应用.

绿光到紫外光的垂直腔面发射器在光电子学中得到了广泛的应用,如超高密度、光存储.近场光学方案被认为是实现高密度光存储的重要手段.垂直腔面发射激光器还可用在全色平板显示、大面积发射、照明、光信号、光装饰、紫外光刻、激光加工和医疗等方面I2)、如前所述,半导体激光器自20世纪80年代初以来,由于取得了DFB动态单纵模激光器的研制成功和实用化,量子阱和应变层量子阱激光器的出现,大功率激光器及其列阵的进展,可见光激光器的研制成功,面发射激光器的实现、单极性注人半导体激光器的研制等等一系列的重大突破,半导体激光器的应用越来越广泛,半导体激光器已成为激光产业的主要组成部分,目前已成为各国发展信息、通信、家电产业及军事装备不可缺少的重要基础器件.

半导体激光器在半导体激光打标机中的应用:

半导体激光器因其使用寿命长、激光利用效率高、热能量比YAG激光器小、体积小、性价比高、用电省等一系列优势而成为2010年热卖产品,e网激光生产的国产半导体激光器的出现,加速了以半导体激光器为主要耗材的半导体激光机取代YAG激光打标机市场份额的步伐。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639