选择特殊符号
选择搜索类型
请输入搜索
激光切割。
连续输出功率达到1KW以上,激光切割精度1微米。
半导体激光器工作原理:半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输...
半导体激光器通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受...
如果是光通信的研究,一般用的多的半导体激光器的波长是1550nm波段的,其次是1310nm,也有其他的如,850nm和980nm等等。 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电...
半导体激光器与单模光纤对准平台运动误差分析
为了实现半导体激光器与单模光纤快速精确耦合对准,需分析对准平台的扰动特性.首先,基于半导体激光器与单模光纤的对准误差,构建了五维对准平台.然后,针对半导体激光器与单模光纤对准过程中运动误差的随机性问题,运用多体系统理论,建立了对准平台的拓扑结构模型,并分析了其运动过程中的位姿,得到了半导体激光器末端点运动误差模型.最后,利用Monte Carlo方法,结合该运动误差模型,对运动误差进行了概率分析.结果表明:在不考虑静止误差的情况下,半导体激光器末端点的位置在x、y和z三个方向的运动误差近似为中间高两边低的对称分布.此分析可为对准过程中运动误差补偿提供数据参考.
多芯片半导体激光器光纤耦合设计
应用ZEMAX光学设计软件模拟了一种多芯片半导体激光器光纤耦合模块,将12支808nm单芯片半导体激光器输出光束耦合进数值孔径0.22、纤芯直径105μm的光纤中,每支半导体激光器功率10 W,光纤输出端面功率达到116.84W,光纤耦合效率达到97.36%,亮度达到8.88MW/(cm2·sr)。通过ZEMAX和ORIGIN软件分析了光纤对接出现误差以及单芯片半导体激光器安装出现误差时对光纤耦合效率的影响,得出误差对光纤耦合效率影响的严重程度从大到小分别为垂轴误差、轴向误差、角向误差。
焊接平台在生产过程中,会出现重量的偏差。往往焊接平台的设计考虑到铸造误差和机械加工的误差,铸铁平台的重量误差一般不得超过10%,超过10%时,要对焊接平台的质量做进一步的鉴定才可以确定此铸铁平台是否可以投入使用。
焊接平板规格:(特殊规格根据需方图纸制作。)
规格(长×宽) |
精度等级 |
|||
0级 |
1级 |
2级 |
3级 |
|
平面度公差 |
||||
200×200 |
5 |
10 |
20.5 |
|
200×300 |
5.5 |
11 |
22 |
|
300×300 |
5.5 |
11 |
22 |
|
300×400 |
6 |
12 |
24 |
|
400×400 |
6.5 |
12.5 |
25 |
|
400×500 |
6.5 |
13 |
26 |
66 |
400×600 |
7 |
14 |
27.5 |
70 |
500×500 |
6.8 |
14 |
28 |
68 |
500×600 |
7 |
14.2 |
28.5 |
71 |
500×800 |
8 |
15.5 |
31 |
78 |
600×800 |
8 |
16 |
32 |
80 |
600×900 |
8.3 |
16.5 |
33 |
83 |
1000×750 |
9 |
18 |
36 |
90 |
1000×1000 |
20 |
40 |
97 |
|
1000×1200 |
20.5 |
41 |
103 |
|
1000×1500 |
22 |
45 |
112 |
|
1000×2000 |
26 |
52 |
130 |
|
1500×2000 |
28 |
56 |
140 |
|
1500×3000 |
70 |
174 |
||
2000×3000 |
74 |
184 |
||
2000×4000 |
88 |
219 |
焊接平板的检验方法 1、焊接平台工作面上不应有锈迹、划痕、碰伤及其他影响使用的外观缺陷。 2、焊接平台工作面上不应有砂孔、气孔、裂纹、夹渣及缩松等铸造缺陷。各铸造表面应彻底清除型砂,且表面平整、涂漆牢固,各税边应修钝。 3、T型槽在平板的相对两侧面上,应有安装手柄或吊装位置的设置、螺纹孔或圆柱孔。设置吊装位置时应考虑尽量减少因吊装而引起的变形。 4、焊接平台应经稳定性处理和去磁。 5、焊接平台工作面与侧面以及相邻两侧面的垂直公差为12级(按GB1184—80《形状位置公差》规定)。 6、焊接平台工作面的硬度应为HB170—220或187—255之间。 7、T型槽主要检定项目 A、材质及表面硬度。B、形状位置公差,含名义尺寸,垂直度公差。C、外观。D、平面度。E、接触斑点。F、平面波动量。G、工作面允许挠度值。H、表面粗糙度。 ] 8、精度参数。 3级平板未规定接触斑点要求。1级平板要求接触斑点数在任意25×25mm平面内不少于20点。2级平板要求接触斑点数在任意25×25mm平面内不少于12点。 焊接平台的铸件面板的厚度不易过薄,这是由两个原因造成的: 1.焊接平台的使用方法,焊接平台顾名思义就是在平台的上面进行焊接工作,不可避免的要进行敲打,敲打的力度造成我们不能使用太薄的面板。 2,焊接平台铸件铸造的方法:焊接平台铸件壁厚过薄,在生产铸件时会出现铸件浇不足和冷隔等缺陷。这是因为过薄的壁厚不能保证铸造合金液具有足够的能力充满铸型。通常在一定铸造条件下,每种铸造合金都存在一个能充满铸型的最小壁厚,俗称为该铸造合金的最小壁厚。设计铸件时,应使铸件的设计壁厚不小于最小壁厚。这一最小壁厚与铸造合金液的流动性以及铸件的轮廓尺寸有关。
常见加工方法为刮制法,刮制的平台工作面能储存润滑油和容纳微小灰屑在凹坑中,提高了基准体现的可靠性与稳定性。
岩石平台是用岩石材料做成的平台,所用演示材料为具有精细颗粒、结构致密的花岗岩、辉绿岩、辉长岩等自然界的坚硬岩石。加工方法是将毛石料进行锯切、打眼后,经多次研磨抛光至镜面光泽即成。岩石平台具有更耐磨、更稳定的性能。
铸铁试验平台在生产过程中,会出现重量的偏差。往往铸铁试验平台的设计考虑到铸造误差和机械加工的误差,铸铁平台的重量误差一般不得超过10%,超过10%时,要对铸铁试验平台的质量做进一步的鉴定才可以确定此铸铁平台是否可以投入使用采用了人工刮研的工序。虽然人工刮研比较落后,但是对于实验平台来说,在精度要求比较高的情况下,是任何机械加工都不可以取代的一种加工工艺。为了提高实验平台的使用寿命,保证其工作精度,建议对刮研深度控制在0.02mm以上,这样可保证有较长的使用寿命和检定周期。根据有
关资料对刮研深度介绍以及刮研深度测得数据,此工艺加工要求是可以达到的。外观上出现震纹,产品表面粗糙程度加大,影响精度,更影响美观。而有了刮研这道工序后,就很少出现以上问题。防工作表面有小范围的局部畸变,来保证实验平台的使用精度。检查作表面的微观质量即微小峰谷的平面度,表面微观质量高,耐磨性好,才能保证试验平台的使用寿命