选择特殊符号
选择搜索类型
请输入搜索
不同气象条件下红外清晰成像反演重建是实现目标识别与获取的关键技术,其研究进展对于军事国防、遥感探测、公共疫情防范、交通导航、安全检测等领域有着深远的意义..本项目将研究不同气象条件下红外传输成像机制及清晰红外图象重建算法.具体内容包括研究晴空、烟雾、刮风、不同云层、雨雪等气象条件下红外大气传输机制建模及快速计算模型;研究不同大气状况下红外场景图象的真实感合成;实现不同气象条件下清晰红外场景图像的反演重建并生成其它气象条件下的红外场景图像;建立红外清晰成像反求效果评估理论,最终完成一个集成这些技术的原型系统.
批准号 |
60475013 |
项目名称 |
不同气象条件下红外清晰成像技术研究 |
项目类别 |
面上项目 |
申请代码 |
F0604 |
项目负责人 |
王章野 |
负责人职称 |
副教授 |
依托单位 |
浙江大学 |
研究期限 |
2005-01-01 至 2007-12-31 |
支持经费 |
23(万元) |
DR成像技术是狭义上的直接数字化照相,即DDR(DirectDigit Radiography)或者DR(direct radiography),通常指采用电子成像板技术-平板检测器技术(FPD Te...
我也在寻找这个问题的答案。就我目前查询的资料来看,yu-gi-oh里面的战斗系统应该属于全息技术中的空气投影交互技术。目前已经实现的全息投影技术包括空气投影、激光投影、全息显示屏投影。还有一些技术只是...
1.都可以测量温度,但热像仪还可以获得热图像; 2. 红外测温仪测量一个点的温度,红外热像仪测量一个面积或一个温度分布区; 3. 红外测温仪用距离系数比...
红外成像技术在军事上的应用
红外成像技术的发展及应用 阅读人数: 13人页数: 7 页 yangfamingsg 红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线, 无法呈现出图像。 在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣, 对其 进行了零星的研究和小规模应用 ,1943 年美国就与 RNO 合作生产了一款代号 M12 的机型, 其功能和外观已经能看出热成像仪的雏形, 这应该算是最找的一款热成像仪, 算是热成像仪 的鼻祖。 1952 年,一款非常重要的材料研 -锑化铟被开发出来,这种新的半导体材料促进了红外线热 成像仪的进一步发展。不久之后,德州仪器和 RNO 公司联合开发出了具有实用价值的前视 红外线( Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装 置控制镜片转动,将光线反射到感光元件
红外热成像技术于建筑领域的应用
近几年,作为红外热像仪关键性技术的非制冷红外焦平面阵列技术取得了突破性进展,因而红外热像仪成为普遍关注的热门产业技术,本文将主要介绍红外热像仪的诊断技术在建筑领域的应用,虽然它已经突破了安防应用的范畴,但是却能够为我们在应用红外热成像技术上带来新的视野。
红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。红外成像仪广泛使用在军事上,直升机和坦克装甲车应用最多,利用红外成像摄像头可以在夜间执行复杂任务,能够精确打击目标。世界上生产红外成像仪比较好的品牌有美国的FLIR(其前身是瑞典公司FLIR)和GOEZ 高斯公司,GOEZ 其产品可靠性能比较高。
GOEZ-C3是一种结构紧凑的热像仪可以大幅度降低夜间驾驶的危险性。它能使驾驶员看得更远而清晰度比使用标准前灯时更高。驾驶员能够探测和监控道路上和道路附近的行人、动物或物体,有更多时间对任何潜在危险做出反应。热成像是一种使驾驶员视觉增强的有效系统, 其视距是前灯的5倍,能明显降低夜间驾驶风险。它能在全黑暗、烟雾、下雨和轻雾情况下产生清晰的图像,而不需要任何光源就能工作。 由于采用热像仪,驾驶员可以更快地探测和识别潜在危险避免致命性事故的发生。GOEZ-C3可在全黑、烟雾、下雨和下雪情况下帮助探测和识别潜在的危险。GOEZ-C3组件可集成在军用车辆设计中,或适合于售后服务市场的民用车辆应用。GOEZ-C3的图像帧频 为8.3 Hz (PAL)或 7.5 Hz(NTSC)。
红外热像仪非常易于使用,热成像垂手可得,操作和直观的屏显指南,不需专业培训便可进行准确的测量,只需指向目标,对准焦仪器,它就会自动调整温度范围来显示清晰鲜明的图像,一旦用户扣动储存按钮,便会存储图像及相关的测量数据。 通过随附的软件,用户可以随心更改主要图像参数,从而优化图像和抽取最多的细节,检测报告根据软件程序操作既可。
电力、电讯设备过热故障预知检测,在电力系统和设备维修检查中,红外线热像仪证明是节约资金的诊断和预防工具。
测量电器设备,非接触红外线热像仪可以从安全的距离测量一个物体的表面温度,使其成为电器设备维修操作中不可缺少的工具。
红外热像仪可以有效防止设备故障和计划外的断电事故的发生.
下面是需要采用红外热像仪进行检查的部分设施:
a:电气装置:可发现接头松动或接触不良,不平衡负荷,过载,过热等隐患。这些隐患可能造成的潜在影响是产生电弧、短路、烧毁、起火。
b:变压器:可以发现的隐患有接头松动,套管过热,接触不良(抽头变换器),过载,三相负载不平衡,冷却管堵塞不畅。空冷器件的绕组可直接用红外热像仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。其影响为产生电弧、短路、烧毁、起火。
c:电动机、发电机:可以发现的隐患是轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。其影响为有问题的轴承可以引起铁芯或绕组线圈的损坏;有毛病的碳刷可以损坏滑环和集流环,进而损坏绕组线圈。检查发热点,在出现的问题导致设备故障之前定期维修或者更换。
电动机线圈绝缘层--通过测量电动机线圈绝缘层的温度,延长它的寿命。还可能引起驱动目标的损坏。为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。
d:连接器:电连接部位会逐渐放松连接器,由于反复的加热(膨胀)和冷却(收缩)产生热量、或者表面脏物、炭沉积和腐蚀。非接触红外热像仪可以迅速确定表明有严重问题的温升。
电动机轴承:
e:各相之间的测量:检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同
f:不间断电源:确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。
备用电池:检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。
g:镇流器:在镇流器开始冒烟之前检查出它的过热。
h:公用设施:确定出连接器、电线接头、变压器和其他设备的热点,一些型号的光学仪器范围在60:1甚至更大,使几乎所有的测量目标都在测量范围内。
1:各种电气装置:可发现接头松动或接触不良,不平衡负荷,过载,过热等隐患。这些隐患可能造成的潜在影响是产生电弧、短路、烧毁、起火。它们的平均修理费用为1万到5万美元;更换需要5万-8万美元,工期为几个星期到几个月。
2:变压器:可以发现的隐患有接头松动,套管过热,接触不良(抽头变换器),过载,三相负载不平衡,冷却管堵塞不畅。其影响为产生电弧、短路、烧毁、起火。重绕需要经费1万到5万美元,更换为8万-14万美元,工期为几个星期或几个月。
3:电动机、发电机:可以发现的隐患是轴承温度过高,不平衡负载,绕组短路或开路、碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。其影响为有毛病的轴承可以引起铁芯或绕组圈的损坏,有毛病的碳刷,则可以损坏滑环和集流环,进而损坏绕组线圈。还可能引起驱动目标的损坏。电机重新绕组圈(5000马力)需要5~9万美元,更换需用9万~15万美元,工期几个星期到几个月.
红外热像仪在电力的应用
电力设备的故障有多种多样,但大多数都伴有发热的现象。从红外诊断的角度看,通常分为外部故障和内部故障。众所周知,电力系统运行中,载流导体会因为电流效应产生电阻损耗,而在电能输送的整个回路上存在数量繁多的连接件、接头或触头。在理想情况下,输电回路中的各种连接件、接头或触头接触电阻低于相连导体部分的电阻,那么,连接部位的损耗发热不会高于相邻载流导体的发热,然而一旦某些连接件、接头或触头因连接不良,造成接触电阻增大,该部位就会有更多的电阻损耗和更高的温升,从而造成局部过热。此类通常属外部故障。
外部故障的特点是:局部温升高,易用红外热像仪发现,如不能及时处理,情况恶化快,易形成事故,造成损失。外部故障占故障比例较大。
所谓高电压电器设备的内部故障,主要是指封闭在固体绝缘以及设备壳体内部的电气回路故障和绝缘介质劣化引起的各种故障。由于这类故障出现在电气设备的内部,因此反映的设备外表的温升很小,通常只有几K。检测这种故障对检测设备的灵敏度要求较高。
内部故障的特点是:故障比例小,温升小,危害大,对红外检测设备要求高。
根据相关单位提供的长期实测数据及大量案例的综合统计,电力设备外部热缺陷一般占设备缺陷总指数的90%~93%,内部热缺陷仅占7%~10%左右。
在电力行业,很早就将热像仪运用于设备的安全检修上,通过其对电气设备和线路的热缺陷进行探测,如变压器、套管、断路器、刀闸、互感器、电力电容器、避雷器、电力电缆、母线、导线、组合电器、绝缘子串、低压电器以及具有电流、电压致热效应或其他致热效应的设备的二次回路等,这对于及时发现、处理、预防重大事故的发生可以起到非常关键而有效的作用。
所谓电气设备热缺陷,通常是指通过一定手段检测得到,由于其内在或外在原因所造成的的发热现象。
根据缺陷所产生的原因不同,我们通常归纳为3 种:一种是长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良,或由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。如接头连接不良,螺栓,垫圈未压紧;长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低;负荷电流不稳或超标等。
另一类是由于电器内部本身故障,如内部连接部件接触不良导致的电阻过大;绝缘材料老化、开裂、脱落;内部元件受潮,元气件损耗增大;冷却介质管路阻塞等等。
对于那些可以直接观察到的设备及元气件,红外热像仪都能够发现所有连接点的热隐患。对于那些由于被遮挡而无法直接看到的部分,则可以根据其热量传递到外面部件上的情况加以分析,从而得出结论。由于现场的实际情况千变万化,即便你通过热像仪得到了一张有热点的图片,要想作出一个精确的判断,可能会受许多因素的影响。如当前的温度,风量,负荷等情况。我们可以根据不同的特点,作相关的分析,作出相应的判断如:
为保证电力生产安全高效运行,对电力设备状态检修提出了更高的要求。由于状态检修主要依赖于对运行中设备的状态检测以及在线监测手段,所以,电力设备运行状态检测和在线监测在电力安全生产中始终起着重要的作用。红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征,因而。采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。
采用红外成像技术可开展以下电力设备状态检测与故障诊断工作。
● 高压电气设备运行状态检测与内、外中心故障诊断:
● 各类导电接头、线夹、接线桩头氧化腐蚀以及连接不良缺陷;
● 各类高压开关内中心触头接触不良缺陷;
● 隔离刀闸刀口与触片以及转动帽与球头结合 不良缺陷;
● 各类CT一次内中心及外中心连接不良缺陷、本体及油绝缘不良缺陷以及内中心铁芯、线圈异常不良过热陷;
● 各类PT绝缘不良缺陷、缺油以及内中心铁芯、线圈异常不良过热缺陷;
● 各类电容器过热、耦合电容器油绝缘不良和缺油(低油位)缺陷;
● 各类避雷器内中心受潮缺陷、内中心元件老化或非线性特性异变缺陷;
● 各类绝缘瓷瓶表面污秽缺陷,零值绝缘子检测,劣化瓷瓶检测;
● 发电机运行状态检测、电刷与集电环接触状态检测、内中心过热检测;
● 电力变压器箱体异常过热,涡流过热,高、低压套管上、下两端连接不良以及充油套管缺油(低油位)缺陷;
● 各类电动机轴瓦接触不良以及本体内、外中心异常过热。
Spotlight 400傅里叶变换中红外/近红外成像系统技术参数: 7800~720 cm-1 成像模式/7800~600 cm-1 单点模式;红外图像光谱采集速度170张/秒,空间分辨率6.25x6.25μm和25x25μm(单点模式下用光圈定义测量的样品面积),专利的Z形折叠光学系统允许改变采样时的像素分辨率;由16个带有镀金信号线的独立优质MCT红外检测器元件合并成为的线阵列检测器(一排窄带的MCT阵列检测器和一个100微米中带MCT单点检测器),线性模式扫描,以100%曝光系数记录数据;图像ATR(衰减全反射)附件,适应各种各样的样品类型,采用特别优化的锗晶体来采集红外图像光谱信号,可以测量500μm直径的样品,空间分辨率突破常规红外图象的物理限制达到1.56μm;大样品台使采样区域增至160x60mm,允许一次测试多个样品或测试面积非常大的样品;样品台移动精度0.1μm,最多每秒可改变五次移动方向,位置重现性可达到0.001%;可见光CCD照相机提供高质量的可视图像,二向色镜允许红外光和可见光共用一条光路,消除了光路校正的问题,LED 发光二极管照明提供了极佳的可视图像质量。
获取固/液等多种形态样品的红外/近红外光谱及显微图像。