选择特殊符号
选择搜索类型
请输入搜索
1.平台测量:适用于面积较大的平面.就是找三个最远的基准点,将其找平,再对平面地各个点进行测量.最大的差值即为平面度误差.2.刀口尺测量:适用于小平面测量.
至少有三种办法实现:1、自学习法。先手控采点,然后保存程序,自动运行,实现自动测量;2、3D编程法。在电脑上对着3D数模取点编程,然后自动测量;3、具有自动扫描功能的三坐标可以直接自动测量。将取的点进...
工程测量中应用GPS控制测量平面及高程精度
随着科技的发展和时代的不断进步,工程建设行业发展迅速,在工程测量中逐渐应用了GPS测量技术,该技术是在传统工程测量技术上的创新。GPS技术之所以能被广泛运用到现代工程建设项目中,是因为该技术测量速度快,操作简便,能够大大地提高测量效率。但GPS测量技术中高程精度由于受各种因素的影响,导致高程精度较低,影响到整个测量过程的整体质量。因此,现代工程测量中应用GPS控制测量,必须要分析测量的平面与高程精度,降低高程误差,以提高测量的整体质量。
平面度测量是指被测实际表面对其理想平面的变动量。
平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面 度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。
平面度误差测量的常用方法有如下几种:
1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。
平面是由直线组成的,因此直线度测量中直尺法、光学准直法、光学自准直法、重力法等也适用于测量平面度误差。测量平面度时,先测出若干截面的直线度,再把各测点的量值按平面度公差带定义(见形位公差)利用图解法或计算法进行数据处理即可得出平面度误差。也有利用光波干涉法和平板涂色法测量平面误差的。
光波干涉法常利用平晶进行,图为测量所得的不同干涉条纹。图中a的干涉条纹是直的,而且间距相等,只在周边上稍有弯曲。这说明被检验表面是平的,但与光学平晶不平行,而且在圆周部分有微小的偏差。图中b的干涉条纹弯曲而且间隔不相等,表明被检验表面是球形的,平晶有微小倾斜。条纹弯曲度约为条纹间距的1.5倍,表示平面度误差为1.5×0.3μm=0.45μm。图中c的干涉条纹呈圆形,同样表明被检验表面是球形表面。将条纹数目乘以所用光束波长的一半,即得所求的平面误差为1.5×0.3μm=0.45μm。图中d的干涉条纹成椭圆形排列,说明被检验表面是桶形的。可以把干涉图案作为被检验表面的等高线,因此可以画出该表面的形状。这种方法仅适宜测量高光洁表面,测量面积也较小,但测量精确度很高。平面是由直线组成的,因此直线度测量中直尺法、光学准直法、光学自准直法、重力法等也适用于测量平面度误差。测量平面度时,先测出若干截面的直线度,再把各测点的量值按平面度公差带定义(见形位公差)利用图解法或计算法进行数据处理即可得出平面度误差。也有利用光波干涉法和平板涂色法测量平面误差的。
光波干涉法常利用平晶进行,图为测量所得的不同干涉条纹。图中a的干涉条纹是直的,而且间距相等,只在周边上稍有弯曲。这说明被检验表面是平的,但与光学平晶不平行,而且在圆周部分有微小的偏差。图中b的干涉条纹弯曲而且间隔不相等,表明被检验表面是球形的,平晶有微小倾斜。条纹弯曲度约为条纹间距的1.5倍,表示平面度误差为1.5×0.3μm=0.45μm。图中c的干涉条纹呈圆形,同样表明被检验表面是球形表面。将条纹数目乘以所用光束波长的一半,即得所求的平面误差为1.5×0.3μm=0.45μm。图中d的干涉条纹成椭圆形排列,说明被检验表面是桶形的。可以把干涉图案作为被检验表面的等高线,因此可以画出该表面的形状。这种方法仅适宜测量高光洁表面,测量面积也较小,但测量精确度很高。
2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。
3、液平面法:液平面法是用液平面作为测量基准面,液平面由 "连通罐"内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。
4、光束平面法:光束平面法是采用准值望远镜和瞄准靶镜进行测量,选择实际表面上相距最远的三个点形成的光束平面作为平面度误差的测量基准面。
5、激光平面度测量仪:激光平面度测量仪用于测量大型平面的平面度误差 。
6、利用数据采集仪连接百分表测量平面度误差的方法 。
测量仪器:偏摆仪、百分表、数据采集仪。
测量原理:数据采集仪可从百分表中实时读取数据,并进行平面度误差的计算与分析,平面度误差计算工式已嵌入我们的数据采集仪软件中,完全不需要人工去计算繁琐的数据,可以大大提高测量的准确率。
井下巷道平面测量分为平面控制测量与碎部测量两部分。井下巷道平面控制测量是从井底车场的起始边和起始点开始,在巷道内向井田边界布设经纬仪导线。起始边的方位角和起始点的坐标是通过平面联系测量确定的 。
隧道工程平面控制测量的主要任务是测定各洞口控制点的平面位置,以便根据洞口控制点将设计方向导向地下,指引隧道开挖,并能按规定的精度进行贯通。因此,平面控制网中应包括隧道的洞口控制点。通常,平面控制测量有以下几种方法。
①直接定线法
对于长度较短的直线隧道,可以采用直接定线法。如图12-31所示,A、0两点是设计的直线隧道洞口点,直接定线法就是把直线隧道的中线方向在地面标定出来,即在地面测设出位于AD直线方向上的月、C两点,作为洞口点火、0向洞内弓1测中线方向时的定向点。
在4点安置经纬仪,根据概略方位角。定出月'点。搬经纬仪到B'点,用正倒镜分中法延长直线到C'点。搬经纬仪至Cf点,同法再延长直线到0点的近旁0'点。在延长直线的同时,用经纬仪视距法或用测距仪测定义月"、月"C'和C"D"的长度,量出D'0的长度。计算C点的位移量。在CJ点垂直于CfD'方向量取C"C,定出C点。安置经纬仪于C点,用正倒镜分中法延长DC至月点,再从属点延长至A点。如果不与A点重合,则进行第二次趋近,直至月、C两点正确位于AD方向上。月、C两点即可作为在人、0点指明掘进方向的定向点,4、月、C、0的分段距离用测距仪测定,测距的相对误差不应大于1:5000。
②导线测量法
连接两隧道口布设一条导线或大致平行的两条导线,导线的转折角用U2级经纬仪观测,距离用光电测距仪测定,相对误差不大于1:10000。经洞口两点坐标的反算,可求得两点连线方向的距离和方位角,据此可以计算掘进方向。
③三角网法
对于隧道较长、地形复杂的山岭地区,地面平面控制网一般布置成三角网形式,如图12-32所示。测定三角网的全部角度和若干条边长,或全部边长,使之成为边角网。三角网的点位精度比导线高,有利于控制隧道贯通的横向误么占友。
④GPS法
用全球定位系统GPS技术作地面平面控制时,只需要布设洞口控制点和定向点且相互通视,以便施工定向之用。不同洞口之间的点不需要通视,与国家控制点或城市控制点之间的联测也不需要通视。因此,地面控制点的布设灵活方便,且定位精度目前已优于常规控制方法。