选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

超高温陶瓷材料制备方法及其强度计算

《超高温陶瓷材料制备方法及其强度计算》是中国电力出版社出版图书。 

超高温陶瓷材料制备方法及其强度计算基本信息

超高温陶瓷材料制备方法及其强度计算简介

内容简介

本书系统论述了硼化物基超高温陶瓷材料的制备方法及其强度计算,包括基本理论、力学原理、分析方法及工程应用等。作为失效学体系的理论之一,在吸取前人研究成果的基础上,对超高温陶瓷材料的断裂失效行为进行研究。

本书共7章,主要内容包括硼化物基超高温陶瓷材料的研究进展情况,硼化物基超高温陶瓷材料制备工艺及方法,以及针对不同成分的超高温陶瓷材料断裂失效的研究。

本书可作为从事固体力学研究的科技工作者及从事超高温陶瓷材料断裂失效研究的工程师使用和参考,也可作为力学专业本科生和研究生的参考书。

目录

前言

第1章 概述

1.1 引言

1.2 脆性破坏特征

1.3 断裂力学的研究对象

1.4 断裂力学的分类

1.5 断裂力学的发展

1.6 超高温陶瓷材料断裂失效行为概述

第2章 ZrB2-SiC注浆成型及烧结研究

2.1 引言

2.2 试验过程和方法

2.3 ZrB2-SiC陶瓷性能研究

2.4 结论

第3章 ZrB2粉体的制备

3.1 引言

3.2 试验原料和方法

3.3 试验内容

3.4 试验结果分析

3.5 结论

第4章 ZrB2-SiC层状陶瓷的制备及热力学性能分析

4.1 引言

4.2 层状结构陶瓷材料进展

4.3 材料及试验方法

4.4 试验结果分析

4.5 本章小结

第5章 ZrB2-SiC复合陶瓷的制备及断裂失效分析

5.1 引言

5.2 ZrB2-SiC复合陶瓷进展

5.3 试验内容与方法

5.4 实验结果分析

5.5 本章小结

第6章 硼化物基超高温陶瓷断裂数值模拟

6.1 引言

6.2 超高温陶瓷材料氧化烧蚀研究现状

6.3 理论基础和研究方法

6.4 超高声速飞行器翼缘热冲击模拟仿真

6.5 本章小结

第7章 超高温陶瓷材料微观结构对晶间残余应力的影响

7.1 引言

7.2 超高温陶瓷材料宏观热传导与热应力分析

7.3 超高温陶瓷材料晶间残余应力试验分析

7.4 微量颗粒对超高温陶瓷材料晶间残余应力仿真分析

7.5 内聚力模型对ZrB2-SiC晶界建模

7.6 SiC颗粒与ZrB2基热不匹配分析

7.7 本章小结

参考文献 2100433B

查看详情

超高温陶瓷材料制备方法及其强度计算造价信息

  • 市场价
  • 信息价
  • 询价

陶瓷薄板

  • 600×1200×5.5,仿石
  • 蒙娜丽莎
  • 13%
  • 四川润兴楠新型建材有限责任公司
  • 2022-12-07
查看价格

陶瓷薄板

  • 600×1200×5.5,纯色
  • 蒙娜丽莎
  • 13%
  • 四川润兴楠新型建材有限责任公司
  • 2022-12-07
查看价格

陶瓷薄板

  • 900×1800×5.5,纯色
  • 蒙娜丽莎
  • 13%
  • 四川润兴楠新型建材有限责任公司
  • 2022-12-07
查看价格

陶瓷薄板

  • 900×1800×5.5,仿石
  • 蒙娜丽莎
  • 13%
  • 四川润兴楠新型建材有限责任公司
  • 2022-12-07
查看价格

3M进口雨夜反光陶瓷

  • 12.69kg/袋或181.3kg/桶;反光珠
  • t
  • 3M
  • 13%
  • 广西众嘉壹贸易有限公司
  • 2022-12-07
查看价格

便携式计算

  • 台班
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

饰线(普通)按展开面积计算

  • 阳江市2011年10月信息价
  • 建筑工程
查看价格

饰线(普通)按展开面积计算

  • 阳江市2011年8月信息价
  • 建筑工程
查看价格

高温、高压、环保陶瓷透水砖(GGTC)

  • 300×150×55mm(花岗岩面)
  • 中山市2022年6月信息价
  • 建筑工程
查看价格

高温、高压、环保陶瓷透水板(GGTC)

  • 300×300×55mm(花岗岩面)
  • 中山市2022年5月信息价
  • 建筑工程
查看价格

19机及超高温搬迁改造费

  • 200苗条、200标准各一条
  • 1项
  • 2
  • 高档
  • 含税费 | 含运费
  • 2020-04-26
查看价格

嵌入式超高温电热板

  • HBGBH-3618
  • 1套
  • 1
  • HATCO (赫高)
  • 高档
  • 含税费 | 含运费
  • 2019-04-29
查看价格

嵌入式超高温电热板

  • HBGBH-3018(NO TRIM)
  • 1个
  • 1
  • HATCO
  • 不含税费 | 不含运费
  • 2016-02-19
查看价格

嵌入式超高温电热板

  • TS-800C(no-trim)
  • 8块
  • 1
  • THERMAPRO
  • 不含税费 | 不含运费
  • 2016-01-28
查看价格

嵌入式超高温电热板

  • HBGBH-3018 (no-trim) 嵌入式
  • 1套
  • 1
  • HATCO
  • 不含税费 | 不含运费
  • 2015-09-02
查看价格

超高温陶瓷材料制备方法及其强度计算常见问题

查看详情

超高温陶瓷材料制备方法及其强度计算文献

以聚碳硅烷为先驱体制备ZrB_2-SiC_C超高温陶瓷 以聚碳硅烷为先驱体制备ZrB_2-SiC_C超高温陶瓷

以聚碳硅烷为先驱体制备ZrB_2-SiC_C超高温陶瓷

格式:pdf

大小:422KB

页数: 4页

通过在1800℃和20 MPa条件下热压烧结ZrB_2和聚碳硅烷(PCS)裂解粉制得ZrB_2-SiC-C复合材料。样品中从PCS裂解得到的SiC体积分数从0%开始按5%递增到30%。通过XRD、SEM、维氏压痕测试等手段表征了样品的相组成、微观结构和力学性能。研究表明可得到15%和20%SiC含量的致密均匀样品,其具有好的韧性,但由于C的存在,硬度相对较低。

一种发泡陶瓷及其制备方法 一种发泡陶瓷及其制备方法

一种发泡陶瓷及其制备方法

格式:pdf

大小:422KB

页数: 1页

本发明公开了一种发泡陶瓷,按重量份数计,包括以下组分:粉煤灰20~80份,钛酸钾5~15份,氧化铝1~10份,陶土5~10份,石英10~15份,钠长石6~11份,硼砂6~12份,悬浮剂1~2份,发泡剂0.4~1.5份,增强剂1.5~5份。相对于现有技术,本发明充分利用对环境有害的粉煤灰来制造发泡陶瓷,且粉煤灰的掺杂量高;同时

轨道强度计算轨道强度计算简介

轨道强度计算的主要目的,是运用力学原理,分析和计算轨道各组成部分,在机车车辆以各种不同运营条件运行时所产生的应力和变形。在保证列车安全、平稳和高速运行条件下,根据已有的轨道类型及其他特定条件,确定机车车辆所允许的最大轴重和行车速度;以及在机车车辆类型、轴重和最高行驶速度已知时,经过强度计算并结合国家技术政策,选择合理的轨道类型。轨道强度计算的主要内容,是在列车动载作用下计算轨底边缘的弯曲拉应力、轨头压应力、木枕支承面的承压应力、道床顶面的承压应力、路基面的承压应力以及混凝土轨枕和宽轨枕的轨下断面、中间断面的弯矩等 。

轨道强度计算主要研究以下三个方面:(1)确定机车车辆施加于轨道上的荷载,研究轨道变形,轨道破坏的机理。(2)研究轨道结构各组成部分的应力和变形,寻求加强或改进轨道结构,延长设备使用寿命和维修周期的措施。(3)为研究能设计适应高速、重载运输的少维修或不维修的轨道结构,提供必要的理论依据 。

查看详情

铝渣球及其制备方法发明内容

铝渣球及其制备方法专利目的

《铝渣球及其制备方法》提供了一种有害杂质含量低级的铝渣球及其制备方法,适用于铝镇静钢冶炼纯净或超纯净钢且在初炼出钢投加后能很快生成覆盖钢水表面作保温剂。

铝渣球及其制备方法技术方案

《铝渣球及其制备方法》解决其技术问题所采用的技术方案是:一种铝渣球,含有金属铝(Al)、萤石(CaF2)、碳酸钙(CaCO3)、三氧化二铝(Al2O3)、二氧化硅(SiO2)以及少量的水份(H2O)、磷(P)、硫(S)、铜(Cu)和不可避免的其它杂质,它的组份含量是(重量%):铝10~45;三氧化二铝5~35;萤石10~60;碳酸钙5~15;二氧化硅≤5;水份≤0.5;磷≤0.02;硫≤0.15;铜≤0.3;其它物质余量。

为适应不同钢种的需要,进一步地,它的组份含量是(重量%):铝20~30;三氧化二铝10~15;萤石40~50;碳酸钙10~12;二氧化硅≤5;水份≤0.5;磷≤0.02;硫≤0.15;铜≤0.3;其它物质余量。

进一步地,它的组份含量是(重量%):铝10~20;三氧化二铝20~30;萤石40~50;碳酸钙10~15;二氧化硅≤5;水份≤0.5;磷≤0.02;硫≤0.15;铜≤0.3;其它物质余量。

进一步地,它的组份含量是(重量%):铝23.5~26.5;三氧化二铝10~15;萤石43.5~46.5;碳酸钙10~12;二氧化硅≤5;水份≤0.5;磷≤0.02;硫≤0.15;铜≤0.3;其它物质余量。

进一步地,它的组份含量是(重量%):铝20~25;三氧化二铝30~35;萤石20~35;碳酸钙10~15;二氧化硅≤5;水份≤0.5;磷≤0.02;硫≤0.15;铜≤0.3;其它物质余量。

一种铝渣球的制备方法,具有如下工艺流程:将取样分析合格后的金属铝粒、铝渣粉、萤石精矿、优质石灰石粉、玻璃水采购到位并分仓储存,将化验合格的原材料称重配比,然后投入混料机混合均匀,再加入玻璃水混合均匀,然后将物料投入对辊式压球机内滚压成球,经干燥设备干燥即得到成品。

进一步地,所述各原材料的化学成份的组份含量(重量%)分别为:铝粒:Al≥95%,Cu≤0.5%,Si≤3%;铝渣粉:Al≥40%,Al2O3≤55%,SiO2≤5%;萤石粉:CaF2≥98%,SiO2≤1%,S≤0.05%,P≤0.03%;石灰石粉:CaCO3≥95%,SiO2≤2%,S≤0.05%,P≤0.01%。

当这种铝渣球在出钢后加入钢包中,由于球状物料具有很好的流动性,因而能迅速在钢水表面形成覆盖层;由于钢水的加热作用,物料中的碳酸钙在1000℃左右分解产生CO2气体使球体崩裂离散,形成松散粉状物对钢水表面起保温作用。逸出的CO2气体排出钢水表面空气,以防止钢水的氧化,由于粉状物料的保温作用,CaCO3升温分解并不激烈而延续一段时间,以满足出钢至精炼的时间要求。在精炼期中,粉状物在搅拌条件下熔融并参与钢水的脱氧反应,

2Al 3FeO→Al2O3 3Fe

脱氧产物氧化铝与萤石粉中的氟化钙产生反应,

Al2O3 3CaF2→3CaO 2AlF3

生成的三氟化铝成气体逸出,生成的氧化钙继续与脱氧产物三氧化二铝化合,

CaO Al2O3→2Al2O4

以上反应与化合过程同时进行,脱氧产物化合成渣的动力学条件非常有利,最终生成以CaAl2O4(偏铝酸钙)为主的渣相,该渣的理论熔点为1575℃,当有10%以上的氟化钙及少量二氧化硅存在时,其熔点可降至1400℃左右,与钢水具有较大的相间张力,能很好地上浮成渣而不会在钢中形成夹杂,从而更有利于钢水的纯净。

当采用部分铝渣粉代替金属铝粉,部分碳酸钙粉代替萤石粉时,该铝渣球的主要成分为金属铝、氟化钙、碳酸钙、三氧化二铝、二氧化硅,其脱氧及精炼反应可用下式表达:

22Al 33O 4Al2O3 12CaF2 3CaCO3 2SiO2

12CaAl2O4·2SiO2 3CaF2 6AlF3↑ 3CO2

上式左边的反应物中的氧来自钢水,其余物质为保温兼精炼剂成分,每公斤以上成分物料能结合0.25公斤左右的氧,CO2气体在保温期间生成逸出,AlF3气体在脱氧精炼期间生成除去。

如上所述的铝渣球,可在其中添加合金化剂,最典型的成分是Al、Ti,Al可以铝粒的形式加入,其它成分可以铁合金的粉剂的形式加入,加入量可在相当大的范围内变化,最高可达20(重量%),以适应钢种合金化的需要。由于在基料中有大量的金属铝作保护,因此所加入的合金化元素氧化损失很少且收得率稳定。

如上所述的铝渣球,可在其中添加Ba、Mg、K、Na、Li的碳酸盐,以部分或全部取代碳酸钙,碳酸盐总量在15%以下时不会对使用造成不良影响。这些碱金属或碱土金属的氧化物对以CaAl2O4(偏铝酸钙)为主的渣相能起到改性、变质和改变表面张力的作用,从而更有利于钢水的纯净。

如上所述的铝渣球,可用Ti部分或全部取代Al,以满足用Ti脱氧与合金化的钢种(如不锈钢等)。

如上所述的铝渣球,可在其中添加钒、铌的氧化物,利用铝的还原作用完成对钢中添加合金成分的过程,以降低合金化的成本。

铝渣球及其制备方法有益效果

一、碳、硅、硫、磷等杂质含量很低,特别适用于低碳,低硅纯净钢和其他超纯净钢;代替了粉煤灰、碳化稻壳等有缺陷的保温剂;水分含量的控制,避免了物料进入钢水中的爆腾现象。

二、可在相当大的范围内改变脱氧和合金化元素的成分含量,适应多钢种变化的需要。

三、在一定含量的范围内可任意选择碱金属或碱土金属氧化物(以碳酸钙化合物的形式加入)完成对精炼合成渣的改性、变质等特殊要求。

四、原料普通、易得,成球工艺简单、可靠,不存在成分偏析波动,投加工艺简单,钢水表面铺展保温性能优良。

五、脱氧与精炼同步进行,钢水中氧化物夹杂减少。

查看详情

铝渣球及其制备方法荣誉表彰

2007年,《铝渣球及其制备方法》获得第五届江苏省专利项目奖优秀奖。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639