选择特殊符号
选择搜索类型
请输入搜索
核子武器在引爆以前必须维持在次临界。以铀核弹为例,可以把铀分成数大块,每块质量维持在临界以下。引爆时把铀块迅速结合。投掷在广岛的“小男孩”原子弹是把一小块的铀透过枪管射向另一大块铀上,造成足够的质量。这种设计称为“枪式”。钚核弹不能以这种方法引爆。第一枚钚原子弹“胖子”的钚是造成一个在次临界以下的中空球状。引爆时使用包围在四周的炸药把钚挤压,增加密度及减少空间,造成即发临界。这种设计称为“内爆式”。
临界事故(英语:criticality accident)是核反应堆发生链式反应导致功率失常激增引起的事故。事故中浓缩铀或钚等裂变材料中的链式反应能产生强烈的中子辐射,对人类伤害极大,并且会在周围环境中引发感生放射性。临界或超临界核裂变一般发生在反应堆堆芯内部或实验中。
虽然临界事故危害较大,但是它一般达不到原子弹的设计条件,因此一般不会引发核爆炸。核反应产生的热量可能会让核材料膨胀,因此几秒之后材料又将处于亚临界状态,反应停止。在原子能的发展历程中,在反应堆外收集核裂变材料的时候曾经发生过60次临界事故,其中一些事故导致离事发地点较近的人员因接受了过量的辐射而死亡。不过,没有一起事故引起过爆炸。
把铀或钚的单质、化合物或溶液混合起来,就有可能引发临界事故。决定混合物是否达到临界点(即是否发生临界反应)的因素包括:同位素的比例;材料的形状;溶液的化学组成;化合物或合金的类别;复合材料和周围材料。 预测材料达到临界状态的可能性的计算较复杂,因此民用和军用核设施都需要专人监控,以避免发生临界反应。
临界事故大致可分为两类。
操作事故,操作中所有的预防措施都失效的时候就会发生。
反应堆事故,反应堆失去控制,达到临界条件。根据反应的发展过程,可以把事故分为四个类型:
瞬间发生,迅速达到临界条件的事故;
只在短时间达到临界条件的事故;
潜在事故;
稳定发展的事故。
临界质量(Critical mass)是指维持核子连锁反应所需的裂变材料质量。不同的可裂变材料,受核子的性质(如裂变横切面)、物理性质、物料型状、纯度、是否被中子反射物料包围、是否有中子吸收物料等等因素影响,而会有不同的临界质量。
刚好可以产生连锁反应的组合,称为已达临界点。比这样更多质量的组合,核反应的速率会以指数增长,称为超临界。如果组合能够在没有延迟放出中子之下进行连锁反应,这种临界被称为即发临界,是超临界的一种。即发临界组合会产生核爆炸。如果组合比临界点小,裂变会随时间减少,称之为次临界。
恩里科·费米最先发现超临界组合,不一定同时是超过即发临界。他的发现开展了受控制的连锁反应的研究,后来发展的核子反应堆及核能都是出于这一发现。
所谓超临界水,是指当气压和温度达到一定值时,因高温而膨胀的水的密度和因高压而被压缩的水蒸气的密度正好相同时的水。此时,水的液体和气体便没有区别,完全交融在一起,成为一种新的呈现高压高温状态的液体。安德...
超临界水,是指当气压和温度达到一定值时,因高温而膨胀的水的密度和因高压而被压缩的水蒸气的密度正好相同时的水。此时,水的液体和气体便没有区别,完全交融在一起,成为一种新的呈现高压高温状态的液体。安德里亚...
能够以最少的物料到达临界质量的形状是球形。如果在四周加以中子反射物料,临界质量可以更少。有中子反射的球形铀-235临界点为15公斤左右。钚则为10公斤左右。
以下为普通球形,没有中子反射之下的临界质量:
同位素 |
半衰期 (年) |
临界质量 (kg) |
临界直径 (cm) |
---|---|---|---|
钚-238 |
87.7 |
9.04–10.07 |
9.5–9.9 |
钚-239 |
24,110 |
10 |
9.9 |
钚-240 |
6561 |
40 |
15 |
钚-241 |
14.3 |
12 |
10.5 |
钚-242 |
375,000 |
75–100 |
19–21 |
铀-233 |
159,200 |
15 |
11 |
铀-235 |
704,000,000 |
52 |
17 |
锎-249 |
351 |
6 |
9 |
锎-251 |
290 |
5 |
8.5 |
锎-252 |
2.6 |
2.73 |
6.9 |
锔-243 |
29.1 |
7.34–10 |
10–11 |
锔-244 |
18.1 |
13.5–30 |
12.4–16 |
锔-245 |
8500 |
9.41–12.3 |
11–12 |
锔-246 |
4760 |
39–70.1 |
18–21 |
锔-247 |
15,600,000 |
6.94–7.06 |
9.9 |
锫-247 |
1380 |
75.7 |
11.8-12.2 |
镅-241 |
432.2 |
55–77 |
20–23 |
镅-242 |
141 |
9–14 |
11–13 |
镅-243 |
7370 |
180–280 |
30–35 |
镎-236 |
154,000 |
7 |
8.7 |
镎-237 |
2,144,000 |
60 |
18 |
纯度较低的铀,临界质量会有所增加。例如20%的铀-235,以4 cm厚的铍反射中子临界质量达400公斤。若如果纯度只为15%,临界质量更高达600公斤。
核武器
浓缩铀
原子弹
超临界/超超临界锅炉新型铁素体耐热钢焊接质量控制
本文简要的介绍了在超临界/超超临界锅炉中广泛应用的新型铁素体耐热钢的发展历程、分类,对如何控制新型铁素体耐热钢焊接质量进行了分析,并对新型铁素体耐热钢焊接与传统低合金耐热钢焊接的不同点.新型铁素体耐热钢焊接的合格标准以及质量检验的相关要求进行了描述。
超临界CO2制冷循环的应用与研究前景
超临界CO2制冷循环的应用与研究前景——本文研究了超临界CO2制冷循环的工作原理及其在汽车空调、复杂式制冷循环和热泵型供热系统的应用,并对超临界CO2制冷技术的发展前景、下一步研究的重点提出了自己的思考。
超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率要提高1.2%。未来火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组,它们在发达国家已得到广泛的研究和应用。
超临界火电技术由于参数本身的特点决定了超临界锅炉只能采用直流锅炉,在超临界锅炉内随着压力的提高,水的饱和温度也随之提高,汽化潜热减少,水和汽的密度差也随之减少。当压力提高到临界压力(22.064Mpa)时,汽化潜热为0,汽和水的密度差也等于零,水在该压力下加热到临界温度(373.99℃)时即全部汽化成蒸汽。超临界压力临界压力时情况相同,当水被加热到相应压力下的相变点(临界温度)时即全部汽化。因此超临界压力下水变成蒸汽不再存在汽水两相区,由此可知,超临界压力直流锅炉由水变成过热蒸汽经历了两个阶段即加热和过热,而工质状态由水逐渐变成过热蒸汽。因此超临界直流锅炉没有汽包,启停速度快,与一般亚临界汽包炉相比,超临界直流锅炉启动到满负荷运行,变负荷速度可提高1倍左右,变压运行的超临界直流锅炉在亚临界压力范围内超临界压力范围内工作时,都存在工质的热膨胀现象,并且在亚临界压力范围内可能出现膜态沸腾;在超临界压力范围内可能出现类膜态沸腾。超临界直流锅炉要求的汽水品质高,要求凝结水进行100%除盐处理。由于超临界直流锅炉水冷壁的流动阻力全部依靠给水泵克服,所需的压头高,既提高了制造成本又增加了运行耗电量且直流锅炉普遍存在着流动不稳定性、热偏差和脉动水动力问题。另外,为了达到较高的质量流速,必须采用小管径水冷壁,较相同容量的自然循环锅炉超临界直流锅炉本体金属耗量最少,锅炉重量轻,但由于蒸汽参数高,要求的金属等级高,其成本高于自然循环锅炉。
如超临界流体萃取(supercritical fluid extraction,简称SFE)、超临界水氧化技术、超临界流体干燥、超临界流体染色、超临界流体制备超细微粒、超临界流体色谱(supercritical fluid chromat ography)和超临界流体中的化学反应等,但以超临界流体萃取应用得最为广泛。很多物质都有超临界流体区,但由于CO2的临界温度比较低(31.06℃),临界压力也不高(7.38MPa),且无毒,无臭,无公害,所以在实际操作中常使用CO2超临界流体。如用超临界CO2从咖啡豆中除去咖啡因,从烟草中脱除尼古丁,从大豆或玉米胚芽中分离甘油酯,对花生油、棕榈油、大豆油脱臭等。又例如从红花中提取红花甙及红花醌甙(它们是治疗高血压和肝病的有效成分),从月见草中提取月见草油(它们对心血管病有良好的疗效)等。使用超临界技术的唯一缺点是涉及高压系统,大规模使用时其工艺过程和技术的要求高,设备费用也大。但由于它优点甚多,仍受到重视。超临界流体密度很大,具有溶解性能。在恒温变压或恒压变温时,体积变化很大,改变了溶解性能,故可用于提取某些物质,这种技术称为超临界流体萃取。
在超临界水中,易溶有氧气,可使氧化反应加快,可将不易分解的有机废物快速氧化分解,是一种绿色的"焚化炉"。
由于超临界流有密度大且粘稠度小的特点,可将天然气转化为超临界态后在 管道中运送,这样既可以节省动力,又可以增加运输速率。
超临界二氧化碳具有低粘稠度、高扩散性、易溶解多种物质、且无毒无害,可用于清洗各种精密仪器,亦可代替干洗所用的氯氟碳化合物,以及处理被污染的土壤。
超临界二氧化碳可轻易穿过细菌的细胞壁,在其内部引起剧烈的氧化反应,杀死细菌。
利用超临界流体进行萃取.将萃取原料装入萃取釜。采用二氧化碳做为超临界溶剂。二氧化碳气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与被萃取物料充分接触,选择性溶解出所需的化学成分。含溶解萃取物的高压二氧化碳流体经节流阀降压到低于二氧化碳临界压力以下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧下降而析出溶质,自动分离成溶质和二氧化碳气体二部分,前者为过程产品,定期从分离釜底部放出,后者为循环二氧化碳气体,经过热交换器冷凝成二氧化碳液体再循环使用。整个分离过程是利用二氧化碳流体在超临界状态下对有机物有特异增加的溶解度,而低于临界状态下对有机物基本不溶解的特性,将二氧化碳流体不断在萃取釜和分离釜间循环,从而有效地将需要分离提取的组分从原料中分离出来。
超临界水具有非常强的极性,可以溶解极性极低的芳烃化合物及各种气体(氧气、氮气、一氧化碳、二氧化碳等),能够促进扩散控制的反应速率,具有重要的工程意义。
通入有机废物进行氧化反应,即超临界水氧化法(supercritical water oxidation,SCWO)。其结果是有机废物被完全氧化成二氧化碳、氮气、水及可以从水中分离的无机盐等无毒的小分子化合物,达到净水的目的。