选择特殊符号
选择搜索类型
请输入搜索
井种类很多,方法分类也很多。根据应用领域的不同,测井可以分为油气测井,煤田测井,金属非金属矿测井,水文及工程测井等。根据仪器下井的方式不同,可以分为电缆测井和随钻测井。根据井眼状况不同,测井可以分为裸眼井和套管井。在《地球物理测井》过程中,主要是按照探测对象的物理性质不同,进行测井方法分类:以岩石导电性为基础的测井方法包括普通电阻率测井,侧向测井,感应测井,微电极测井,微侧向测井,微球形聚焦测井和微电阻率扫描成像测井等。以岩石化学性质为基础的测井方法包括自然电位测井和人工电位测井等。以岩石弹性或声学性质为基础的测井方法包括声速测井。以岩石核物理性质为基础的测井方法包括自然伽马测井,密度测井,中子测井,核磁共振测井等。其他测井方法包括井径测井,井斜测井,地层倾角测井等。
主要的裸眼井方法如下表所示。
测井仪器的纵向分辨率指其区分地层厚度的能力,而径向分辨率指其对地层横向的探测能力。测井仪器的两个分辨率是互相制约的,一般来说,纵向分辨率越高的仪器径向探测深度越浅。分辨率主要受控于传感器的结构和几何尺寸。常规测井的分辨率如表所示。 2100433B
1.电性
(1)岩石的电阻率(Q·m)。
(2)岩石的电导率(s/m)。
(3)介电常数(F/m 或相对介电常数)。
(4)自然电位(mV)。
(5)激发极化电位(mV)。
(6)阳离子交换能力(阳离子交换容量QV),CEC,是岩石中粒土矿物及含量的一种测度。
2.声学特性
(1)声波传播时间(μs/m)(岩石的声波传播速度)。
(2)声波幅度衰减(衰减系数),岩石声波吸收特性。
3.核物理性质
(1)自然伽马射线强度(每秒计数率或API 刻度单位),岩石含放射性矿物数量。
(2)自然伽马射线能量谱分析(eV 或MeV),岩石含放射性同位素的类别。
(3)电子密度及体积密度(g/cm3),岩石的伽马射线散射能力。
(4)光电吸收指数(b /e),岩石矿物对软伽马射线吸收特性。
(5)体积光电吸收指数(b/cm3),岩石各种矿物对软伽马射线综合吸收特性。服从物理平衡方程。
(6)含氢指数及中子孔隙度(%),岩石的中子衰减特性。
(7)热中子俘获截面(b),岩石的热中子衰减特性。
(8)热中子衰减时间(μS),岩石的热中子寿命特性。
(9)次生伽马射线谱(MeV),岩石各种矿物及元素在中子场中的活化特性。
4.核磁共振特性
(1)横向驰豫时间T2(自旋一自旋驰豫)。
(2)纵向驰豫时间T1(自旋晶格驰豫时间)。
(3)扩散系数D。
径流系数主要受集水区的地形、流域特性因子、平均坡度、地表植被情况及土壤特性等的影响。径流系数越大则代表降雨较不易被土壤吸收,亦即会增加排水沟渠的负荷。
主要是指矿物成分及微观结构两方面。矿物成分:膨胀土含大量的活性粘土矿物,如蒙脱石和伊利石,尤其是蒙脱石,比表面积大,在低含水量时对水有巨大的吸力,土中蒙脱石含量的多寡直接决定着土的胀缩性质的大小。微观...
摇床运动的不对称性它对矿粒沿纵向的选择性搬运及床层的松散影响很大。适宜的不对称性,要求既能保证较好的选择性搬运性能,又保证床层的充分松散。对较难松散和较易搬运的粗粒物料,不对称性可小些,对较易松散,但...
1.井眼影响
1)井径变化及井眼垮塌
井眼越大,测井仪周围的钻井液体积越多,影响了测井读数。对于贴井壁仪器井径扩大及不规则直接造成极板贴不上井壁,读数变小。
2)钻井液影响
井内钻井液的成分和矿化度,对电法测井和中子及密度测井都有较大影响,若含有大量重晶石,则严重影响岩性密度测井,使测井曲线无法应用。
2.侵入影响
由于井内压力与地层压力不一致,造成了一部分钻井液滤液侵入地层,驱替一部分地层流体(油、气、地层水),这就是侵入,侵入使得井壁周围的地层电性、声学特性、核物理性都要发生重大变化,使测井读数不能反映。侵入使井壁周围的地层产生的冲洗带、侵入过渡带和原状地层三个区带。显然必须通过侵入校正才能获得正确的地层岩石物理值。
3.下井仪器的状态
1)仪器直径及偏心
仪器直径与井眼直径必须匹配适当,否则不易顺利测井,且影响电缆的张力从而影响深度的准确性。仪器偏心对于井下声波电视影响最大,有时会得不到可用的图像。
2)仪器的旋转和跳动
下井仪器的旋转和跳动对于声波测井,特别是地层倾角测井曲线影响最大,必须控制和校正。
4.测井速度
各种测井仪器的测井速度(即每小时仪器自井底上提的长度)是不同时,特别是有"时间常数"要求的放射性仪器,对测井速度有着较严格的要求,速度太快将降低测量值。
城市规划造价中的地理信息影响因素分析
城市规划中的工程造价管理,关系到政府的战略决策和施工建设单位的利益.城市规划工程造价的控制和管理过程中受到的影响因素较多.地理信息系统包括详细的分析地形的数据、距离标准任务的公里数、所处的精确位置、到达所用到的时间、精准的位置,地理信息系统不仅是提供给人们地理位置导航以及地理信息的介绍,在城市规划中也起到了相当大的作用.本文分析了城市规划造价中的地理信息影响因素,抑制工程造价与地理环境之间的不确定因素的影响,为城市规划工程提供参考.
城市规划造价中的地理信息影响因素分析
以往的城市规划业务流程更多的是在C/S结构的软件系统下实现,近几年随着网络技术的发展,大部分已转向在B/S结构下实现,但由于地理信息系统技术在B/S结构下的空间数据管理及更新等操作上的技术瓶颈,要求它要以新的方式为规划管理业务提供图形支持。城市规划工程造价的控制和管理过程中受到的影响因素较多。本文从工程实际出发,分析城市规划工程造价的地理环境信息影响因素,提出控制城市规划造价管理的措施,抑制工程造价与地理环境之间的不确定因素的影响,为城市规划工程提供参考。
补偿中子测井的探测深度随孔隙度减小而增大。长源距探测器LS的探测深度大约为40cm,而短源距探测器SS的探测深度大约只有30cm。由于中子孔隙度测井的探测范围比较小,井筒的影响虽然得到补偿,但在许多情况下还需做校正。
核技术测试和分析的关键是信息的采集和处理。核测井信息的处理可分为信息采集处理和应用分析处理两个阶段。
核测井信息采集处理是利用测井井下和地面仪器对核测量信息进行采集、处理和记录过程。通常情况下,核测井是通过传感器把核物理信号转换成电信号,并通过滤波、降噪、模数转换等系列处理后记录成计算机可识别的数字信号。放射性计数的统计涨落特性和信息源不强等使得有效信号较易受噪声信号干扰。因此,提高有关信噪比的研究和应用显得相当重要。提高传感器的探测效率和测量精度属硬件技术研究范畴,加强信号分析、统计、拟合、反演、小波变换等软件开发研究正在成为提高信噪比的重要技术。
核测井信息应用分析是以核测井样品模拟刻度为基础、以解谱和与其他信息融合为处理手段、以测井地质应用为目标的信息处理应用。
无论是核辐射强度测井还是全能谱测井,其应用基础均离不开被测量对象(地层)必须与标准对象(刻度对象)具有相同或相近的仪器响应特征、且符合线性叠加原理,这是进行核测井信息应用分析的基础,是核测井信息地质应用的前提条件。核辐射强度测井评价认为,总强度与已知的地质信息存在固定的线性关系,通过标定即可进行对应的信息处理。
全能谱测井的标准谱获得必须以被测量地区实际井所包含的物质特性为基础,进行实际的全谱刻度,利用线性叠加原理确定混合谱标准,这是对全谱测井信息正演和对工作谱解析的基础。剥谱技术、逆矩阵解谱、最小二乘解谱等是常用的解谱应用技术。
实际的测井环境条件与标准谱刻度条件不一致可能导致解谱的较大偏差,给应用带来一定困难。测井处理中提出的环境校正可在某种程度上减少或消除这种偏差。测井环境校正处理的主要途径有简化理论评价、蒙特卡洛方法、模型井试验等。测井处理中采用多次测量平均法、比值法、累积辐射处理、重叠技术等可有效提高核测井信息的应用效果。
核测井技术是随着当代核技术的发展和石油、煤炭、地质矿产等对核测井技术发展的需要而迅速发展起来的尖端测井技术之一。随着人工射线源技术、传感器技术、测量技术、信息处理技术与计算机技术的发展,核测井技术仍处在飞速发展之中。
核测井技术的大多数方法依赖于射线源性能,少部分方法利用井下地层的天然放射性进行测量。现有的测井用射线源主要是γ射线源和中子源。受井眼尺寸(偏小、弯曲、不规则等) 、井下环境(高温、高压等) 制约,地面实验用加速器γ源等技术尚难以应用于测井领域。
测井常用的γ源多是放射性同位素源,主要用于示踪测井。随着核技术发展,核反应堆、加速器的不断建造,核燃料循环体系的建立,为放射性核素应用提供了日益丰富的物质基础。放射性同位素广泛应用研究为更好利用现有设备资源开辟了新途径。放射性同位素制备技术是同位素辐射技术应用的物质基础。时下,人工制备放射性同位素的方法有3 种:反应堆生产的丰中子同位素,简称堆照同位素;加速器生产的贫中子同位素,简称加速器同位素;从核燃料废物中提取的同位素,简称裂片同位素。
放射性同位素释放的射线作为一种人工信息源,具有相当高的探测灵敏度,是常规化学分析无法比拟的,这一特征被广泛应用于同位素示踪分析技术,在工农业技术研究中获得了显著的经济、社会、环境效益。测井中的流体密度计、流体识别仪、γ射线探伤仪、厚度检测仪等均利用了放射性同位素信息源技术。
中子源是中子与物质相互作用研究必须的信息源。测井常用的中子源有放射性同位素中子源、自发裂变中子源和人工脉冲中子源3 种。衡量中子源特性的指标是源强度、能量、单色性、γ 辐射和寿命(半衰期) 等。测井常用的A241m2Be 源是放射性同位素中子源,中子产额2×107/ s ,平均中子能量5 MeV;252Cf 是自发裂变中子源,中子产额2 ×108/ s ,平均中子能量
2. 35 MeV ;脉冲中子源(中子管技术) 常用T(d,n) 源,中子产额107~109/ s,强流中子管产额达1010/ s,平均中子能量14. 1 MeV。
应用射线源,必须注意放射性防护、放射性危险、放射性可控等要求,测井用中子源需向小体积、高强度、高度可控、高安全、高耐温、耐压指标发展。
传感器是能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。它是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息按一定规律变换成为电信号或其他所需形式的输出,满足信息的传输、存储、显示、记录和控制要求。传感器属高新技术的瓶颈工业,它的地位非常重要。我国测井用的传感器技术较为先进,基本上与国际水平相近,但创新不够,大多是引进、模仿和仿制,这与我国测井需要不相适应。努力致力于促进我国核测井传感器事业及其应用的发展,满足核测井应用需要,是传感器生产和应用企业共同的努力方向。
测井用传感器的核心部件是探测器。不同的核辐射需要用不同的探测器测量。所有核探测器均基于射线与物质的相互作用原理,在物质中具有不同的空间分布、能量分布、时间分布和特征作用而制作。
强度型核仪表利用放射源发出的射线(特别质子与γ射线) 与物质相互作用(吸收或散射) 后,射线强度降低从而检测受测试物质的宏观非电参数而设计出的一类仪表。
物质的成分与含量可通过放射源发出的射线与物质相互作用引起的射线强度的变化与诱发的特征能谱加以确定,这种仪表统称为物质成份与含量分析仪表。能谱分析型仪表同样地具有这种成份与含量分析的功能。
测井中用已知活度的γ放射源和探测器共同组成探头(测井仪) 下到钻孔内,沿钻孔连续测量从碳层中散射的γ射线强度,可探知介质的密度,从而确定地层岩性。这种γ测井技术有助于加快能源勘探开发速度,并降低成本。
中子水分计是测量大体积物料中含水量的一种核分析仪表,又称中子水分计或中子湿度计。这种仪表的工作原理基于氢核对快中子的强烈减速慢化效应。测定物料中的慢化中子数量,进而求出介质的含水量。
高分辨率的辐射探测器和多道脉冲高度分析器等核电子学仪器的发展,使分析测量的灵敏度与准确度大为提高。电子计算机的应用进一步改善了数据处理的速度和规模,使能谱分析型仪表结构更趋小型化、轻便化,特别为仪表的现场应用与野外操作提供了便利。这类核仪表可分为3 种类型:1) 荧光类仪表(如放射性核素X 射线荧光分析仪);2) 活化类(主要指中子活化) 仪表;3) 核测井仪表(如石油、煤田、金属测井使用的核仪表) 。
核测井探测器要求高效率、高计数通过率、高能量分辨率、高耐温、耐压、高抗震、小体积、价格适中等。
测井常用的γ和X 射线探测器为闪烁探测器,主要由闪烁体、光电倍增管和电子仪器组成。用光耦合剂将闪烁体与光电倍增管耦合起来,组装成探头,配上电子学仪器,就构成了闪烁探测器。为提高脉冲输出幅度,可选择发光效率高的闪烁体,增大闪烁体尺寸,选择反射系数大的反射层和性能良好的光导系统,调整好光电倍增管前面几级的分压电阻,选择与闪烁体能实现良好匹配的光电倍增管。
闪烁探测器输出脉冲幅度与入射光子在闪烁体中损失的能量成正比。而光子是通过前述3 种效应损失能量的,所以,在测量单能光子时得到的输出的是一连续谱。
与闪烁体相匹配的光电倍增管也有了发展,硅、HgI2等光敏二极管小巧,与闪烁体更匹配,半导体的量子效率远高于光电倍增管;HgI2与CsI ( Tl) 组合探头对662 keVγ射线能量分辨率达5 % ,性能更优的探头还将不断出现。
核测井需要的γ射线和X 射线探测器正向高密度、高精度(能量分辨性好、计数通过率高) 、高计数、高温度稳定性、短荧光衰落、中低价格和小体积发展。高性能位置灵敏γ射线和X 射线核探测器将更广泛应用于测井中。
中子探测器在测井中经常用到,较早使用BF3正比管,因环保要求现正逐渐被3He 正比管取代;选用6Li 玻璃闪烁探头作中子剂量当量探测器,采用中子慢化探测、镉棒三维空间能响调节新原理,从而使仪器灵敏度极高,耐γ、中子能量响应特性好。仪器灵敏度高、抗γ性能好、能量响应特性好、量程宽(7 个量级) 、密闭性强便携式数字显示并伴有声、光定性指示等的性能优越的中子探测器也在发展中。
核测井仪表正在不断更新结构,完善功能,提高精度,改善仪表的稳定性、可靠性、通用性,实现仪表标准化、系列化、小型化、自动化与智能化,以适应现代测井的连续化、高速化、精密化的要求。具体地说,今后核测井仪的发展趋势可能集中在以下5 个方面。
1) 结构上从单元组合式向功能组装式方向发展。
2) 在测量方法上,从简单原始的检测手段向高效率、高分辨力的复杂的测量装置过渡,为获取更多信息,射线强度测量方法逐渐为射线能谱分析法所取代。
3) 在仪器功能上,从单点、单参数检测向多点、多参数自动检测方向发展,与非核技术综合应用,有助于扩大核测井仪表的应用范围,提高其应用效能。
4) 仪器的通用性和安全性方面,核测井仪将进一步实现系列化、标准化。
5) 随着各种支持性技术的发展,特别是计算机的广泛使用,测井仪器的技术水平达到一新的高度。核测井仪采用计算机后,结构紧凑、体积缩小;测量技术由模拟测量向数字化方向发展,实现输入信息自动补偿,系统启动、调节和操作程序化,并对采集的数据进行运算、判断、分析与处理,从而扩大仪表信息功能,提高仪表检测精度,为多参数测量和测井过程闭环控制奠定了基础;仪器将硬件与软件相结合,体现出设计的合理性与操作的简便性;仪器具有故障自我诊断功能,大大减轻了设备维修工作量,从而提高了仪器的可靠性;通过数字和图象信息显示,达到更好的人2机结合,以满足现代核测井生产连续化、自动化、智能化、高速化与集成化的要求。
根据油(气)层、煤层或其他探测目标与周围介质在电性上的差异,采用下井装置沿钻孔剖面记录岩层的电阻率、电导率、介电常数及自然电位的变化。电法测井包括以下几种:
使用简单的下井装置(电极系)探测岩层电阻率,以研究岩层的电性特征。由于影响因素较多,其测量结果称为视电阻率。电阻率测井按其电极系的组合及排列方式不同,又分为梯度电极系测井及电位电极系测井。
在电阻率测井的基础上发展了微电极测井。它用于测量靠近井壁附近很小一部分泥饼和冲洗带地层的电阻率,能较准确地指示泥饼的存在及划分渗透性地层,能区分储集层中的薄夹层(非渗透层)以及准确地确定地层厚度。
是一种聚焦电阻率测井方法,主要用于高电阻、薄地层及盐水泥浆测井。根据同性电相斥的原理,在供电电极(又称主电极)的上方和下方装有聚焦电极,用聚焦电流控制主电流路径,使它只沿侧向(垂直井轴方向)流入地层。由于侧向测井电极系结构不同(如双侧向电极系的浅侧向电极系和深侧向电极系),聚焦电流对主电流的屏蔽作用大小不同,因而它们具有不同的径向探测深度。
是一种探测地层电导率的测井方法。该方法根据电磁感应原理,测量地层中涡流的次生电磁场在接收线圈中产生的感应电动势,以确定地层的电导率。它是淡水泥浆井和油基泥浆井有效的一种测井方法。同时它特别适用于低电阻率岩层的探测,包括离子导电的含高矿化度地层水的油(气)、水层和电子导电的金属矿层。
是探测岩石介电常数的一种测井方法。由于水的介电常数远远大于油(气)和造岩矿物的介电常数,所以它可用于判断油田开发中出现的水淹层,并提供估计油层残余油饱和度及含水量多少的可能性。
沿钻孔剖面测量移动电极与地面地极之间的自然电场。自然电位通常是由于地层水和泥浆滤液之间的离子扩散作用及岩层对离子的吸附作用而产生的。因此,自然电位曲线可用来指示渗透层,确定地层界面、地层水矿化度以及泥质含量。在油(气)井中,它与电阻率测井组合,可以划分油(气)、水层并进行地层对比等。