选择特殊符号
选择搜索类型
请输入搜索
第1章 绪论 1
1.1 材料力学的任务 1
1.1.1 构件的承载能力 1
1.1.2 材料力学的任务 2
1.2 材料力学的基本假设 3
1.2.1 对变形固体的基本假设 3
1.2.2 对构件变形的基本假设 3
1.3 外力、 内力和应力 4
1.3.1 外力 4
1.3.2 内力与截面法 4
1.3.3 应力 6
1.4 变形与应变 7
1.5 杆件变形的基本形式 8
思考题 9
习题 10
第2章 轴向拉伸与压缩 11
2.1 引言 11
2.2 拉(压)杆的内力 12
2.2.1 轴力 12
2.2.2 轴力图 13
2.3 拉(压)杆的应力 15
2.3.1 拉(压)杆横截面上的应力 15
2.3.2 圣维南原理 16
2.3.3 拉(压)杆斜截面上的应力 17
2.4 材料拉伸时的力学性能 19
2.4.1 拉伸试验与σε曲线 19
2.4.2 低碳钢拉伸时的力学性能 20
2.4.3 其他塑性材料拉伸时的力学性能 22
2.4.4 铸铁拉伸时的力学性能 23
2.5 材料压缩时的力学性能 24
2.6 拉(压)杆的强度计算 25
2.6.1 极限应力、 许用应力与安全因数 25
2.6.2 拉(压)杆的强度条件 26
2.7 拉(压)杆的变形 29
2.7.1 拉(压)杆的轴向变形 29
2.7.2 拉(压)杆的横向变形 30
2.8 拉(压)杆的超静定问题 33
2.8.1 拉(压)杆超静定问题的解法 33
2.8.2 温度应力 35
2.8.3 装配应力 36
2.9 应力集中的概念 37
思考题 39
习题 40
第3章 剪切与挤压 48
3.1 引言 48
3.2 剪切的实用计算 49
3.2.1 剪切面上的内力 49
3.2.2 剪切面上的应力 49
3.2.3 剪切强度条件 49
3.3 挤压的实用计算 50
3.3.1 挤压应力的实用计算 50
3.3.2 挤压强度条件 50
3.4 连接件的强度计算 51
思考题 56
习题 56
第4章 扭转 60
4.1 引言 60
4.2 外力偶矩、 扭矩和扭矩图 61
4.2.1 外力偶矩的计算 61
4.2.2 扭矩 61
4.2.3 扭矩图 62
4.3 圆轴扭转时的应力与强度条件 64
4.3.1 薄壁圆筒扭转时的切应力 64
4.3.2 切应力互等定理 64
4.3.3 切应变与剪切胡克定律 65
4.3.4 圆轴扭转时的应力 65
4.3.5 极惯性矩和抗扭截面系数 68
4.3.6 扭转圆轴的强度 70
4.4 圆轴扭转时的变形与刚度条件 71
4.4.1 扭转角 71
4.4.2 圆轴扭转的刚度条件 73
4.5 非圆截面杆扭转的概念 75
4.5.1 自由扭转与约束扭转 75
4.5.2 矩形截面杆的自由扭转 76
4.5.3 开口薄壁杆件的自由扭转 77
4.5.4 闭口薄壁杆件的自由扭转 78
思考题 80
习题 82
第5章 弯曲内力 86
5.1 引言 86
5.2 梁的计算简图 87
5.2.1 支座约束的基本形式 87
5.2.2 载荷的基本形式 87
5.2.3 静定梁的基本形式 88
5.3 剪力与弯矩 89
5.4 剪力、 弯矩方程与剪力、 弯矩图 91
5.5 剪力、 弯矩与载荷集度间的微分关系 96
5.5.1 剪力、 弯矩与载荷集度间的微分关系 96
5.5.2 利用剪力、 弯矩与载荷集度间的微分关系绘制剪力图、 弯矩图 97
5.5.3 剪力、 弯矩与载荷集度间的积分关系 102
5.6 平面刚架的弯曲内力 104
思考题 105
习题 105
第6章 弯曲应力 109
6.1 引言 109
6.2 截面图形的几何性质 109
6.2.1 静矩与形心 110
6.2.2 惯性矩、 惯性积和惯性半径 112
6.2.3 平行移轴公式 114
6.2.4 转轴公式 115
6.3 梁在平面弯曲时横截面上的正应力 116
6.3.1 变形的几何关系 116
6.3.2 物理关系 118
6.3.3 静力关系 118
6.4 梁的正应力强度条件 122
6.5 弯曲切应力 127
6.5.1 矩形截面梁的弯曲切应力 127
6.5.2 工字形截面梁的弯曲切应力 130
6.5.3 圆形截面梁的弯曲切应力 131
6.5.4 薄壁圆环形截面 132
6.6 梁的切应力强度校核 133
6.7 提高梁的弯曲强度的措施 136
思考题 140
习题 141
第7章 弯曲变形 147
7.1 引言 147
7.2 挠曲线的近似微分方程 148
7.3 用积分法求梁的变形 149
7.4 用叠加法求梁的变形 155
7.5 简单超静定梁 163
7.6 梁的刚度条件及提高梁刚度的措施 165
7.6.1 刚度条件 165
7.6.2 提高梁刚度的措施 166
思考题 167
习题 168
第8章 应力状态分析与强度理论 172
8.1 引言 172
8.2 应力状态的概念 172
8.3 复杂应力状态的工程实例 174
8.3.1 二向应力状态的工程实例 174
8.3.2 三向应力状态的工程实例 176
8.4 二向应力状态分析的解析法 176
8.4.1 任意斜截面上的应力 176
8.4.2 主平面与主应力 177
8.5 二向应力状态分析的图解法 179
8.5.1 应力圆的概念 179
8.5.2 应力圆的作法 179
8.5.3 根据应力圆确定斜截面上的应力 180
8.5.4 根据应力圆确定主应力与极值应力 180
8.6 三向应力状态 183
8.6.1 三向应力圆 183
8.6.2 最大应力 183
8.7 广义胡克定律 185
8.8 强度理论 187
8.8.1 强度理论概念 187
8.8.2 适用于脆性断裂的强度理论 188
8.8.3 适用于塑性屈服的强度理论 189
8.8.4 强度理论的选用 190
思考题 191
习题 193
第9章 组合变形 197
9.1 引言 197
9.2 斜弯曲 198
9.2.1 斜弯曲的应力计算 198
9.2.2 斜弯曲梁的中性轴 199
9.3 拉伸(压缩)与弯曲的组合变形 201
9.4 弯曲与扭转的组合变形 204
思考题 210
习题 211
第10章 压杆稳定 216
10.1 引言 216
10.2 细长压杆的临界压力 218
10.2.1 两端铰支细长压杆的临界压力 218
10.2.2 其他支座细长压杆的临界载荷 220
10.3 欧拉公式的适用范围和经验公式 222
10.3.1 临界应力与柔度 223
10.3.2 欧拉公式的适用范围 223
10.3.3 临界应力的经验公式 223
10.3.4 临界应力总图 224
10.4 压杆的稳定计算 225
10.5 提高压杆稳定的措施 230
思考题 233
习题 234
第11章 动载荷 239
11.1 引言 239
11.2 杆件作加速运动时的应力与变形 239
11.2.1 杆件作匀加速直线运动 239
11.2.2 杆件作匀速圆周运动 240
11.3 杆件受冲击时的应力与变形 244
11.3.1 垂直冲击 244
11.3.2 水平冲击 248
11.3.3 突然刹车 249
11.3.4 提高杆件承受冲击能力的措施 250
11.4 交变应力与疲劳破坏 251
11.4.1 交变应力与疲劳破坏 251
11.4.2 交变应力的特征参数 253
11.5 杆件的疲劳强度计算 254
11.5.1 材料的疲劳极限 254
11.5.2 影响杆件疲劳极限的因素 255
11.5.3 对称循环下杆件的疲劳强度计算 258
11.5.4 非对称循环下杆件的疲劳强度计算 259
11.5.5 弯扭组合交变应力下杆件的疲劳强度计算 260
11.5.6 提高杆件疲劳强度的措施 261
思考题 261
习题 263
第12章 能量法 269
12.1 引言 269
12.2 杆件应变能的计算 269
12.2.1 轴向拉(压)杆的应变能 269
12.2.2 扭转圆轴的应变能 270
12.2.3 弯曲梁的应变能 270
12.2.4 组合变形杆的应变能 270
12.3 互等定理 272
12.4 卡氏定理 274
12.5 莫尔定理与单位载荷法 278
12.5.1 莫尔定理 278
12.5.2 单位载荷法 279
12.5.3 计算莫尔积分的图乘法 282
12.6 用单位载荷法求解超静定问题 285
12.6.1 用力法分析超静定问题 285
12.6.2 对称与反对称超静定问题分析 286
思考题 288
习题 289
附录 294
附录A 常用材料的力学性能 294
附录B 型钢表(GB/T 706—2008) 295
附录C 思考题与习题参考答案 307
参考文献 317
本书是“十二五”江苏省高等学校重点教材,也是为应用型本科院校精心编写的材料力学教材。
本书共12章,主要内容包括绪论、 轴向拉伸与压缩、 剪切与挤压、 扭转、 弯曲内力、 弯曲应力、 弯曲变形、 应力状态分析与强度理论、 组合变形、 压杆稳定、 动载荷和能量法等。本书中每章例题经过精心挑选,注意理论与工程实际问题结合,并配有解题分析和讨论。 各章末均配有思考题与习题,附录C给出了思考题与习题参考答案。
本书适合作为应用型本科院校工科各专业的“材料力学”课程的教材,也可作为高职高专和成人教育的教材,还可作为相关工程技术人员的参考书。
N11=8kN(tension)N22=15kN(compression) 原理简单:分别取左右剖面为隔离体,利用平衡条件得到。 所以AB和BC的轴力分别为8kN(tension)、15kN(comp...
这两门课都是典型的公式固定,题目变化无穷的科目,都不算容易。需要多做习题才行。水力学好像只有水利等个别专业才会考,而材料力学对于固体力学,航天航空类,材料类,机械类,土木建筑等都需要考,是大部分工科专...
通常在学校图书馆里书架上都有!过来人...
[材料力学答案]材料力学答案
1 [材料力学答案 ]材料力学 答案 41 导读:就爱阅读网友为大家分享了多篇关于 “[材料力学 答案 ]材料力学答案 41”资料,内容精辟独到, 非常感谢网友 的分享,希望从中能找到对您有所帮助的内容。 相关资料一 : 材料力学答案 41 第一章 绪论 一、是非判断题 1.1 材料力学的研究方法与理论力学的研究方法完全相同。 ( × ) 1.2 内力只作用在杆件截面的形心处。 ( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。 ( × ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、 直杆或曲杆、基本变形或组合变形、横截面或任 意截面的普遍情况。 ( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都 相同。 ( ∨ ) 2 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相 同。 ( ∨ ) 1.7 同一截面上正应力 ζ与
工程力学(基础力学、材料力学)6材料力学第七章9节
工程力学(基础力学、材料力学)6材料力学第七章9节
“她很敬业,能吃苦,责任心强,队里分配的工作任务从不推诿,是我们学习的榜样。”中卫市城市公用事业管理所工会主席、人工保洁队队长李凤兰这样评价马菊芳。
今年42岁的马菊芳,在环卫岗位上已工作了18年。18年来,她每天早出晚归,在自己的清扫片区兢兢业业,用实际行动守护着城市的环境卫生。
马菊芳住在沙坡头区东园镇八字渠小学附近的一间平房里。马菊芳说,最初走上环卫工这个岗位,是为了挣钱补贴家用。当时一个月工资只有110元,她每天凌晨3点多就得从家里出发,4点准时到岗。“当时,我的清扫区域虽然只有600多平方米,但全靠人力,不能吃苦根本坚持不下来。”马菊芳说。
2012年,我市推进实施“以克论净·深度清洁”城市环境卫生工作机制,对环卫工作提出了更高要求,有的环卫工认为制定的卫生达标标准和处罚措施过于严苛,根本无法完成。但马菊芳笑着说:“当初干这份工作是为了补贴家用,但经过了这么多年的努力,感到更多的是责任,是使命。”现在,马菊芳的清洁区域面积达到了6000多平方米。她在自己的清扫区域10分钟就得打一个来回,有时垃圾多了,得小跑着捡拾垃圾。
由于工作表现突出,马菊芳多次被中卫市城市公用事业管理所评为优秀环卫工;2010年被市住建局评为先进工作者……
近年来,环卫工的待遇和工作条件都有了极大改善,社会地位得到极大提升。这些马菊芳都深有体会,她说,现在夏有夏装,冬有冬装,工作服随季节换。市上配备了水洗清扫车、人行道清扫车等机械,彻底改变了过去以人力为主的城市清洁方式。在薪资待遇方面,每人除了单位缴的三险一金外,能拿到手的有1900多元。“现在人们对我们的工作也很尊重,我们的努力也得到了很多人的认可。每次听到有人夸我们中卫干净,我很高兴,觉得脸上有光!”马菊芳自豪地说。
记者 杨丽 王旭
美陈:美术陈列。 将产品元素以占据一定空间使其具有可视形象以供欣赏的艺术。
美陈产品主要通过它的材料、造型、颜色三方面来体现艺术设计理念。是为了你某种特定的需要,通过艺术创造,公开而广泛地向公众宣传。美陈设计是艺术家们帮助企业占领市场、推销产品、树立品牌、扩大知名度的重要形式,主要目的是扩大经济效益。
美陈属于空间设计专业,根据市场需求定位而繁衍成一门综合性很强的学科,美陈具有很鲜明的行业特色。美陈是现代新兴起的学科,是集合广告专业、室内专业、环境景观艺术、工业产品设计等综合设计很强的专业。美陈设计师应具备丰富的文化素养,有较强的创意、策划、组织与协作能力。应熟练掌握系统设计的方法和技能,把握时代及展示专业发展规律,对专业设计所涉及的空间、造型、声光、电等方面具备很强的创造和综合表达能力,同时具备现代科技技术和心理学、人机工程学等相关学科知识。产品元素设计出发点是建立在客户的需求和大众的审美之上,它是一种综合性的广告宣传手法,与一般广告不同,更强调突出造型的艺术主题、表现手法。2100433B
材料力学的创始人伽利略,就曾用材料力学实验试验研究了拉伸、压缩和弯曲现象。材料力学实验部分在整个材料力学中具有重要地位,材料力学实验与材料力学理论教学互为支持,互为验证,加强对材料力学理论知识的理解。主要内容包括:材料力学实验的内容、材料力学实验的标准、方法和要求、实验程序和实验报告组成。根据实验的性质,材料的力学实验可分三类。