选择特殊符号
选择搜索类型
请输入搜索
导波检测在无损评估领域属最新方法之一,这种方法采用机械应力波沿着延伸结构传播,传播距离长而衰减小。目前,导波检测广泛应用于检测和扫查大量工程结构,特别是全世界各地的金属管道检验。有时单一的位置检测可达数百米。同时导波检测还些应用于检测铁轨、棒材和金属平板结构。
导波检测原理:
尽管导波检测通常被认为是超声导波检测或远程超声波检测,但是从根本上它与传统的超声波检测并不相同;与传统超声波检测相比,导波检测使用非常低频的超声波,通常在10~100千赫。有时也使用更高的频率,但是探测距离会明显减少。另外,导波的物理原理比体积型波更加复杂。很多理论在其他个别的文章中有所阐述,这里将更多的讨论导波检测的实践。
导波检测技术历史
对于导波在结构中传播的研究可以追溯到20世纪20年代(1920s);主要启蒙于地震学领域。从那以后,开始致力于导波在圆柱状结构的传播方面的分析研究;在20世纪90年代(1990s)早期,导波检测被认为仅仅是应用于工程结构的无损检测方法。如今,导波检测作为完整健康监测计划应用于石油产业领域。
导波检测技术如何应用(管道检测)
与传统的超声波不同;有多种导波模式用于管道几何学,通常归类为三组,分别是扭转模式、纵向模式和弯曲模式。这些波型模式的声学性能是管道几何学、材料和频率的函数。通常通过典型的图表分布曲线的数学模式来预测波型模式的性能。
管道的导波测试,低频率传感器阵列覆盖管道的整个圆周,产生的轴向均匀的波沿着管道上的传感器阵列的前后方向传播。扭转波模式是最常使用的,纵向模态的使用有所限制。设备运用传感器阵列的脉冲设置激发和探测信号。
在管道横截面变化或局部变化的地方会产生回波,基于回波到达的时间,通过特定频率下导波的传播速度,能准确地计算出该回波起源与传感器阵列位置间的距离。导波检测使用距离波幅曲线修正衰减和波幅下降来预计从某一距离反射回的横截面变化。距离波幅曲线通常通过一系列已知的反射体信号波幅例如焊缝进行校准。
一旦设置好距离波幅曲线,信号振幅和缺陷横截面变化能较好地关联。导波检测不能直接地测量剩余的壁厚,但是它可以将缺陷严重程度分成几种类别。这样操作的其中一个原理是通过激发信号开启模式转换,轴对称导波模式的部分能量转换成弯曲模式。模式转换的总量可精准地预计缺陷在圆周范围的分布,再参考横截面的变化量,操作人员就可以进行严重程度分类。
导波检测的典型结果是通过A扫的方式显示反射波幅与传感器基阵位置的距离。在过去的几年里,一些先进的系统已经开始提供C扫的结果,可以很容易地解读每一个特征的走向。在检验大型管道时,这显然非常有用。
特征
优势
1. 长距离检验----能达到上百米 的检验距离
2. 接触受限----对保温管,能够最小限度地移除保温层;对管道支撑下的腐蚀,无需升起管道;对高空的检验,脚手架的需求能简化到最低限度;可检验穿越公路的埋地管道;
3. 数据能被完全记录;
4. 完整的自动化数据收集。
劣势
1. 数据的解释高度依赖于操作人员;
2. 很难发现小的点蚀缺陷;
3. 对紧挨附件的检验区域,效率不高。
缆式的导波雷达不建议安装在测量筒内,除非下端有较好的固定和符合要求的连接。杆式的可以安装在测量桶内。 导波雷达除了常规的安装注意事项外,主要就是要防止缆绳接触到高位仓壁或者其他障碍物。
导波雷达液位计应用于水液储罐、酸碱储罐、浆料储罐、固体颗粒、小型储油罐。各类导电、非导电介质、腐蚀性介质。如煤仓、灰仓、油罐、酸罐等。 1.可以测量介电常数大于等于1.4的任何介质。2.一般用于测量粘...
导波雷达液位计的技术参数如下:精度 液体:量程小于15m时,±5mm;量程大于15时,测量值5mm±0.05%法兰温度 -30~200℃/-30~150℃,防爆型环境温度 -30~60℃/-30~55...
超声导波检测管道缺陷的实验研究
介绍了超声导波在管道缺陷检测中的应用,并介绍了超声导波的检测原理。利用超声导波对管道缺陷进行检测,通过实验对缺陷回波和转换模态信号进行分析,即可达到对缺陷准确定位的目的。
超声导波检测技术在小直径管检测中的应用
本文从超声波的基本原理入手,以导波传播的形式进行分类,介绍超声导波在输油管道投运前对小直径管无损害检测的应用.
超声导波检测。
本标准规定了输电线路架空地线电磁超声导波检测术语和定义、检测方法概要、人员要求、安全要求、检测工艺规程、检测设备和器材、检测、检测结果的分级、检测结果的验证和处理以及 检测记录和报告等。
本标准适用于环境温度为-20 ℃~50 ℃且范围直径为4 mm~32 mm的架空镀锌钢绞线及铝包钢绞线地线电磁超声导波检测。2100433B
检测范围:φ25~1016mm;检测灵敏度:不低于3%的截面损失量(以Φ219×28mm表面状况良好的钢管,检测距离为直管60m标定)。