选择特殊符号
选择搜索类型
请输入搜索
高次谐波电流、电压可引起下列不良影响:
(1)对通信线产生杂音干扰影响;
(2)引起电力系统中其他电力电容器设备的过负荷;
(3)当电气化铁路负荷某次谐波电流频率与电力系统自身谐振频率相近时,可产生电流谐振,使该次谐波电流在电力系统中放大,危及系统安全运行;
(4)使旋转电机、变压器、电力电缆的出力减少并产生过热,影响电气设备寿命;
(5)造成继电保护误动或仪表读数误差;
(6)使半导体开关元件换相失灵 。
为降低电力牵引负荷产生的谐波,在电力牵引变电所和电力机车中装设了由电容、电感组成的谐波吸收装置。正在发展中的交流-直流-交流电力机车利用电力电子技术,可实现低谐波分量的负荷特性,使谐波影响降到最低 。2100433B
电力牵引高次谐波(harmonics of electric traction) 是指整流式交流电力机车在整流过程中将引起交流侧电流、电压波形畸变,按傅立叶级数分析该畸变波形可分解成颇率为基波频率整数倍的一系列高次谐波分量的叠加 。
谐波电流是一切谐波问题的根源,谐波电压也是由于谐波电流导致的。因此,一般在研究谐波导致的危害时,主要指谐波电流的危害。导致电缆过热;导致变压器过热;导致变无功补偿装置损坏;三次谐波的特殊危害;对其他电...
1、一般而言,低次谐波的危害较大。原因是高次谐波容易通过电抗器等得以抑制。2、移相变压器主要为了抑制低次谐波3、功率单元柜内主要是功率器件和必要的驱动电路,功率器件一般为IGBT。高压变频器的功率单元...
高次谐波的危害 电能是一种特殊性质的能源, 发电厂将纯净的50Hz电能送入电网,通过电网进行输送和分配,但是在电能的输送和使用过程中, 由于各种外部因素的影响, 会导致电压波形发生畸变。 ...
为限制谐波的危害,各国都规定了允许谐波含量的标准。
(1)中国在《电力系统谐波管理暂行规定》中规定了电力系统中任何一点的谐波电压畸变值(见表1)和任一用户接入电力系统的谐波电流允许值(见表2)。
(2)英国电气厅标准(G 5/3-1976)规定的谐波电压允许值见表3,高次谐波电流允许值见表4。
(3)苏联国家标准只规定了电压畸变允许标准,对于110kV系统,电压综合畸变率允许值为5%。
(4)美国IEEE标准建议电压畸变允许值为1.5%。
(5)联邦德国标准规定为3%~5% 。
电气化铁路牵引变电所所用电源高次谐波治理
电气化铁路牵引网中的高次谐波通过牵引变电所27.5 kV所用变压器渗透到所内低压配电系统中,当高次谐波含量过高时,容易导致电压严重畸变。本文通过分析逆scott接线电气变换关系,建立了谐波的两相-三相变换模型,模型表明高压侧谐波电压可渗透到低压配电系统中。实测数据分析了某高铁牵引变电所低压配电系统的谐波畸变率。并在该高铁牵引变电所低压配电系统的负载侧并联了一种Y型阻波高通滤波器,有效地滤除了高次谐波,达到了治理谐波的效果。
荧光灯电路中高次谐波的抑制
文章在简要介绍了高次谐波的产生、危害以及电子镇流器中逆变器的高次谐波对电网、无线电等的干扰,分析了如何滤除荧光灯电路中高次谐波。
无论是裸堆还是带反射层的堆,在次临界状态下都存在着高次谐波。如前所指出的,堆内的中子通量
各阶高次谐波的空间分布
例如,对于一个高H半径为R的圆柱形裸堆,将源可放在堆的顶部中央
与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰。感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰。电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。
高次谐波的危害具体表现在以下几个方面:
电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。
电流和电压谐波同样使电动机铜损和铁损增加,温度上升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。
当高次谐波产生时,由于频率增大,电容器阻抗瞬间减小,涌入大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声,甚至爆炸。
由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。
电流中含有的谐波会产生额外转矩,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。
计量仪表因为谐波会造成感应盘产生额外转矩,引起误差,降低精度,甚至烧毁线圈。
电力电子设备通常靠精确电源零交叉原理或电压波形的形态来控制和操作,若电压有谐波成分时,零交叉移动、波形改变、以致造成许多误动作。
高次谐波还会对电脑、通信、设备电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。
谐波分析是信号处理的一种基本手段。在电力系统的谐波分析中,主要采用各种谐波分析仪分析电网电压、电流信号的谐波,该类仪表的谐波分析次数一般在40次以下。对于变频器而言,其谐波分布与电网不同,电网谐波主要为低次谐波,而变频器的谐波主要为集中在载波频率整数倍附近的高次谐波,一般的谐波分析设备只能分析50次以下的谐波,不能测量变频器输出的高次谐波。对于PWM波,当载波频率固定时,谐波的频率范围相对固定,而所需分析的谐波次数,与基波频率密切相关,基波频率越低,需要分析的谐波次数越高。一般宜采用宽频带的,运算能力较强、存储容量较大的变频功率分析仪,根据需要,其谐波分析的次数可达数百甚至数千次。例如,当载波频率为2kHz,基波频率为50Hz时,其40次左右的谐波含量最大;当基波频率为5Hz时,其400次左右的谐波含量最大,需要分析的谐波次数一般至少应达到2000次。
同时,选择仪表的同时,还应选择合适带宽的传感器,因为传感器的带宽将限制进入二次仪表的信号的有效带宽。一般用选择宽频带的变频电压传感器、变频电流传感器或电压、电流组合式的变频功率传感器。