选择特殊符号
选择搜索类型
请输入搜索
对图1所示电路可做如下分析:
(1)输入端A、B、C都为0V时,D1、D2、D3两端的电压值均为0V,因此都处于截止状态,从而VL=0V;
(2)若A、B、C中有任意一个为 5V,则D1、D2、D3中有一个必定导通。我们注意到电路中L点与接地点之间有一个电阻,正是该电阻的分压作用,使得VL处于接近 5V的高电压(扣除掉二极管的导通电压)
,D2、D3受反向电压作用而截止,这时 VL≈ 5V。
图1表示一基本反相器电路及其逻辑符号。
在其传输特性图中标出了BJT的三个工作区域。对于饱和型反相器来说 ,输入信号必须满足下列条件:逻辑0:Vi
由传输特性可见:
当输入为逻辑0时,BJT将截止,输出电压将接近于VCC,即逻辑1。
当输入为逻辑1时,BJT将饱和导通,输出电压约为0.2~0.3V,即为逻辑0。
可见反相器的输出与输入量之间的逻辑关系是非逻辑关系。
虽然利用以上基本的与、或、非门,可以实现与、或、非三种逻辑运算。但是由于它们的输出电阻比较大,带负载的能力差,开关性能也不理想,因此基本的与、或、非门不具有实用性。解决的办法之一是采用二极管与三极管门的组合,组成与非门、或非门,也就是所谓的 复合门电路。与非门和或非门在负载能力 、工作速度和可靠性方面都大为提高,是逻辑电路中最常用的基本单元。2100433B
图1表示由半导体二极管组成的与门电路,右边为它的代表符号。
图1中A、B、C为输入端,L为输出端。输入信号为 5V或0V。
下面分析当电路的输入信号不同时的情况:
(1)若输入端中有任意一个为0时,例如VA=0V,而VA=VB= 5V时
,D1导通,从而导致L点的电压VL被钳制在0V。此时不管D2、D3的状态如何都会有VL≈0V(事实上D2、D3受反向电压作用而截止)。
由此可见,与门几个输入端中,只有加低电压输入的二极管才导通,并把L钳制在低电压(接近0V) ,而加高电压输入的二极管都截止。
(2)输入端A、B、C都处于高电压 5V ,这时,D1、D2、D3都截止,所以输出端L点电压VL= VCC,即VL= 5V。
1 与门的表示符号:
这个是不能减小的,即使你电阻加的再大,因为二极管的特性是只要两端压差高于0.7就导通, 你可以把电阻跟5V当一个整体看,至于你第二个问题这很明显啊, 因为A才0.3V A肯定先通啊,A通了 后F点电压...
这是某个电路的局部电路,红框内表示的是整个电路的接地部分,电路中的Vcc、V+、Vo都是参考地端的电压值。示意图中,它可以不画出的。
1.二极管是电流器件。根据二极管的伏安特性,是非线性极性元件,二极管两端加正向电压很低时,阻抗是很高的,呈现高阻抗低电流状态。随着电压的升高,电流呈现指数式上升,阻抗也同步随之下降。当增加电压到最大允...
上图表示一基本反相器电路及其逻辑符号。下图则是其传输特性
,图中标出了BJT的三个工作区域。对于饱和型反相器来说 ,输入信号必须满足下列条件:逻辑0:Vi<V1 逻辑1:Vi>V2
由传输特性可见:
当输入为逻辑0时,BJT将截止,输出电压将接近于VCC,即逻辑1。
当输入为逻辑1时,BJT将饱和导通,输出电压约为0.2~0.3V,即为逻辑0。
可见反相器的输出与输入量之间的逻辑关系是非逻辑关系。
虽然利用以上基本的与、或、非门,可以实现与、或、非三种逻辑运算。但是由于它们的输出电阻比较大,带负载的能力差,开关性能也不理想,因此基本的与、或、非门不具有实用性。解决的办法之一是采用二极管与三极管门的组合,组成与非门、或非门,也就是所谓的复合门电路。与非门和或非门在负载能力 、工作速度和可靠性方面都大为提高,是逻辑电路中最常用的基本单元。下图给出了复合门电路的一个例子及其逻辑符号和逻辑表达式。
用于枕形校正的二极管调制电路
本文论述了显示器中用于枕形校正的二极管调制电路的工作原理及实施方案.