选择特殊符号
选择搜索类型
请输入搜索
二氧化钼是一种化学物质,分子式是MoO₂。
墨绿色粉末,带有钢光泽的紫色。密度6.44g/cm3。500℃以上与氢气共热得金属钼。与氯气反应生成二氯氧钼(VI),与氯化氢、碱、酸不反应。极微溶于硫酸、硝酸及硝酸银。与氧气反应生成三氧化钼。
氧化二氧化钼为三氧化钼(MoO3)。可由金属钼在水蒸气中加热,或将三氧化钼在氢气加热至470℃还原制得。
可用作制取钼及其他钼化合物的原料。
用作氧化剂、脱臭剂、杀生剂、保鲜剂、漂白剂等。二氧化氯因为其具有杀菌能力强,对人体及动物没有危害以及对环境不造成二次污染等特点而备受人们的青睐。二氧化氯不仅是一种不产生致癌物的广谱环保型杀菌消毒剂,而...
(1)氧化法:将硒粉加热至220摄氏度熔化,通入氧气,在氧气气氛下加热至500摄氏度反应一小时,停止加热,通氧气冷却至室温制得产品.反应式为:Se+O2==SeO2二氧化硒易溶于水,其水溶液呈弱酸性,...
二氧化氯成本问题,可以从以下四个方面来讲:二氧化氯含量产品中所释放的二氧化氯含量多少是决定二氧化氯消毒剂成本的重要因素,含量越高,产品支出成本也越高,但同时相同质量、含量越高的二氧化氯能够处理的消毒面...
二氧化氯、沸石粉
2010.65 8 栏目编辑 周燕侠防 治 实 例 实践和研究均表明,鱼病暴发与养殖水环境恶化密 切相关。如王鸿泰等(1989)在研究了池塘中亚硝酸盐对 草鱼的毒害后认为,池水中亚硝酸盐含量过高,可能是 诱发草鱼出血病的重要因子。水产养殖过程中,许多疾 病是可以通过改善养殖环境而得到控制的。2007-2009 年,我们在下乡技术服务过程中,发现部分养殖户和基 层水产技术人员忽视水质调控,肓目用药,结果对养殖 生产造成了不小的损失。本文就典型的用二氧化氯、沸 石粉和红壤调节养殖水域水质来达到防治鱼类病害的几 个实例作一对比分析,旨在帮助基层人员提高调控养殖 水域水质的认识和能力,减少盲目用药,更多注意从环 境角度控制水产养殖过程中的病害。 一、实例 例1:南昌县南新乡南新村刘菊家一口村边50亩的 老池塘,池底淤泥35~40厘米,水深80厘米。2007年3 月份,养殖户投放草鱼鱼种3000
以钼氧化物和钼卤化物或金属钼为原料生产钼粉的过程,为钼冶金流程的组成部分。主要有二氧化钼氢还原、钼卤化物氢还原、雾化法、等离子法。产出的钼粉主要用作合金添加剂、钼制品及喷镀原料。
工业上常用的钼粉制取方法。
还原反应为吸热反应,反应平衡常数Kp(pH₂O/(pH2)在700K时为0.076,918K时为0.234,1073K时为0.389,1200K时为0.55,反应平衡常数比较小。由于反应平衡常数较小且是吸热反应,故需采用较高的还原温度。还原在四管还原电炉或其他多管电炉中进行,钼mu采用经充分干燥的氢气(含水分在0.5g/m3以下),还原温度沿炉管长度方向从进料端约923K升至卸料端约1253K。还原产出的钼粉要及时进行过筛和合批。
影响钼粉质量的因素主要有原料质量、装舟情况、还原温度、氢气流量和湿度、物料在炉内停留时间。原料二氧化钼的纯度决定了产品钼粉的纯度。还原舟皿中的装料量、料层厚薄、物料松紧程度都会影响到氢气的渗透、还原水气的排除,因而也会影响到产品钼粉的质量。还原温度低,还原反应不完全,反应速度慢,所得钼粉含氧量高、粒度细;还原温度高则与之相反。氢气湿度大,钼粉含氧量增加,粒度粗;氢气流量大,还原反应速度加快,钼粉含氧量下降,但被带走的物料和热量损失增加。物料在炉内停留时间长,产品钼粉含氧量下降和粒度变粗。在还原过程中设法避免其他杂质的带入和防止钼粉在冷却时氧化也能提高产品钼粉的质量。
为进一步降低产品钼粉中的含氧量,在生产中有时还需把还原产出的钼粉置于马弗炉或其他还原炉中在1273~1373K温度下用干燥氢气进行补充再还原。当采用高纯二氧化钼原料时,严格控制制粉条件和杂质污染,可制得99.9999%的高纯钼粉。
用氢气还原气态钼卤化物制取钼粉的方法。此法属气一气相反应,因而具有易于控制钼粉粒度的特点。可用这种方法制得细粒度甚至超细钼粉,或在某一基体上镀上钼镀层。这是一种有工业前途的方法。钼卤化物主要有氯化钼(MoCl2等)和氟化钼(MoCl5等)。
通常采用"火焰"还原法。还原在如图1所示设备中进行。用喷嘴将钼卤化物蒸气和氢气一起喷入反应塔内,与此同时还喷入卤元素气体与氢气燃烧补充还原不足的热量。由喷嘴喷入的混合气体在反应塔的出口形成"火焰",同时发生气相还原反应得到钼粉。钼粉粒度一般在2um左右。MoCl5、MoF5的还原温度为798~828K,70%~85%的粉末在收尘塔中收集,金属收率可达到96%~97%,所得产品含氟0.03%~0.05%。也有采用流态炉还原的。
雾化法熔融、雾化金属钼块或钼丝制取钼粉的方法,主要有金属钼丝雾化法、真空雾化法和金属钼坯雾化法。
金属钼丝雾化法 将金属钼丝通以强脉冲电流使其熔化并在惰性气氛中将熔融的金属雾化成粉末的方法。用此法得到的粉末颗粒尺寸范围很宽。随放电电压的升高,钼粉的粒度减小,在真空中雾化可得到很细的钼粉。
真空雾化法 雾化设备由两个彼此相叠的小室组成,原始的金属钼物料先在下室中进行真空熔炼,形成熔融金属钼,再在压力下通入氢气使其饱和,然后通过专门的密闭装置从下室将熔融金属钼送入上室,即真空室。熔融金属钼被送入真空室后,由于氢气剧烈析出而导致熔融金属钼流的"爆炸",形成很细的粉末。在真空下或惰性介质中从上室中取出产品钼粉。
金属钼坯雾化法 采用旋转电极雾化法(图2),即将金属钼坯作为旋转自耗电极,通过固定的钨电极发生电弧使金属钼坯熔化,高速旋转(约10000~25000r/min)的自耗电极由于受离心力的作用使熔化了的金属钼雾化成粉,粉末收集室充有惰性气体。此法生产的粉末很纯,粒度范围在10~500um之间。
一种用氢等离子流(见等离子体冶金)还原粉状氧化钼制取钼粉的方法。此法制得的钼粉细且不自燃,平均粒度为0.01~0.1/zm。
二氧化钼氢还原在未来相当长的一段时间内仍然是工业生产中应用最普遍的钼粉制取方法。钼卤化物氢还原、等离子法在超高纯和超细钼粉的制取方面将会逐步推广应用。金属钼丝雾化法、真空雾化法、金属钼坯雾化法由于设备、技术和成本方面的问题暂还不能用于工业生产。
钼粉制取(preparation of molybdenum powder)
以钼氧化物和钼卤化物或金属钼为原料生产钼粉的过程,为钼冶金流程的组成部分。主要有二氧化钼氢还原、钼卤化物氢还原、雾化法、等离子法。产出的钼粉主要用作合金添加剂、钼制品及喷镀原料。
还原反应为吸热反应,反应平衡常数Kp(pH2O/(pH2)在700K时为0.076,918K时为0.234,1073K时为0.389,1200K时为0.55,反应平衡常数比较小。由于反应平衡常数较小且是吸热反应,故需采用较高的还原温度。还原在四管还原电炉或其他多管电炉中进行,钼mu采用经充分干燥的氢气(含水分在0.5g/m3以下),还原温度沿炉管长度方向从进料端约923K升至卸料端约1253K。还原产出的钼粉要及时进行过筛和合批。
影响钼粉质量的因素主要有原料质量、装舟情况、还原温度、氢气流量和湿度、物料在炉内停留时间。原料二氧化钼的纯度决定了产品钼粉的纯度。还原舟皿中的装料量、料层厚薄、物料松紧程度都会影响到氢气的渗透、还原水气的排除,因而也会影响到产品钼粉的质量。还原温度低,还原反应不完全,反应速度慢,所得钼粉含氧量高、粒度细;还原温度高则与之相反。氢气湿度大,钼粉含氧量增加,粒度粗;氢气流量大,还原反应速度加快,钼粉含氧量下降,但被带走的物料和热量损失增加。物料在炉内停留时间长,产品钼粉含氧量下降和粒度变粗。在还原过程中设法避免其他杂质的带入和防止钼粉在冷却时氧化也能提高产品钼粉的质量。
为进一步降低产品钼粉中的含氧量,在生产中有时还需把还原产出的钼粉置于马弗炉或其他还原炉中在1273~1373K温度下用干燥氢气进行补充再还原。当采用高纯二氧化钼原料时,严格控制制粉条件和杂质污染,可制得99.9999%的高纯钼粉。
钼卤化物氢还原用氢气还原气态钼卤化物制取钼粉的方法。此法属气一气相反应,因而具有易于控制钼粉粒度的特点。可用这种方法制得细粒度甚至超细钼粉,或在某一基体上镀上钼镀层。这是一种有工业前途的方法。钼卤化物主要有氯化钼(MoCl2等)和氟化钼(MoCl5等)。通常采用"火焰"还原法。还原在如图1所示设备中进行。用喷嘴将钼卤化物蒸气和氢气一起喷入反应塔内,与此同时还喷入卤元素气体与氢气燃烧补充还原不足的热量。由喷嘴喷入的混合气体在反应塔的出口形成"火焰",同时发生气相还原反应得到钼粉。钼粉粒度一般在2um左右。MoCl5、MoF5的还原温度为798~828K,70%~85%的粉末在收尘塔中收集,金属收率可达到96%~97%,所得产品含氟0.03%~0.05%。也有采用流态炉还原的。
雾化法熔融、雾化金属钼块或钼丝制取钼粉的方法,主要有金属钼丝雾化法、真空雾化法和金属钼坯雾化法。
金属钼丝雾化法将金属钼丝通以强脉冲电流使其熔化并在情陛气氛中将熔融的金属雾化成粉末的方法。用此法得到的粉末颗粒尺寸范围很宽。随放电电压的升高,钼粉的粒度减小,在真空中雾化可得到很细的钼粉。
真空雾化法雾化设备由两个彼此相叠的小室组成,原始的金属钼物料先在下室中进行真空熔炼,形成熔融金属钼,再在压力下通入氢气使其饱和,然后通过专门的密闭装置从下室将熔融金属钼送入上室,即真空室。熔融金属钼被送入真空室后,由于氢气剧烈析出而导致熔融金属钼流的"爆炸",形成很细的粉末。在真空下或惰性介质中从上室中取出产品钼粉。
金属钼坯雾化法采用旋转电极雾化法,即将金属钼坯作为旋转自耗电极,通过固定的钨电极发生电弧使金属钼坯熔化,高速旋转(约10000~25000r/min)的自耗电极由于受离心力的作用使熔化了的金属钼雾化成粉,粉末收集室充有惰性气体。此法生产的粉末很纯,粒度范围在10~500um之间。
等离子法一种用氢等离子流(见等离子体冶金)还原粉状氧化钼制取钼粉的方法。此法制得的钼粉细且不自燃,平均粒度为0.01~0.1/zm。
展望二氧化钼氢还原在未来相当长的一段时间内仍然是工业生产中应用最普遍的钼粉制取方法。钼卤化物氢还原、等离子法在超高纯和超细钼粉的制取方面将会逐步推广应用。金属钼丝雾化法、真空雾化法、金属钼坯雾化法由于设备、技术和成本方面的问题暂还不能用于工业生产。