选择特殊符号
选择搜索类型
请输入搜索
法拉第电容又称超级电容器、双电层电容器、黄金电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。
法拉第电容结构上的具体细节依赖于对法拉第电容的应用和使用。由于制造商或特定的应用需求,这些材料可能略有不同。所有法拉第电容的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。
法拉第电容的结构如图1所示.是由高比表面积的多孔电极材料、集流体、多孔性电池隔膜及电解液组成。电极材料与集流体之间要紧密相连,以减小接触电阻;隔膜应满足具有尽可能高的离子电导和尽可能低的电子电导的条件,一般为纤维结构的电子绝缘材料,如聚丙烯膜。电解液的类型根据电极材料的性质进行选择。
图1 法拉第电容的基本结构
上图中各部分为:(1):聚四氟乙烯载体;(2)(4):活性物质压在泡沫镍集电极上;(3):聚丙烯电池隔膜。
法拉第电容的部件从产品到产品可以有所不同。这是由法拉第电容包装的几何结构决定的。对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。
对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。最后将电极箔焊接到终端,使外部的电容电流路径扩展。
超级电容器电极法拉第电容器电极 2.法拉第电容的工作原理
由于储能机理的不同,人们将法拉第电容分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器。赝电容与双电层电容的形成机理不同,但并不相互排斥。大比表面积准电容电极的充放电过程会形成双电层电容,双电层电容电极(如多孔炭)的充放电过程往往伴随有赝电容氧化还原过程发生,实际的电化学电容通常是两者共存的宏观体现,要确认的只是何者占主要的问题。实践过程中,人们为了达到提高电容器的性能,降低成本的目的,经常将赝电容电极材料和双电层电容电极材料混合使用,制成所谓的混合电化学电容器。混合电化学电容器可分为两类,一类是电容器的一个电极采用赝电容电极材料,另一个电极采用双电层电容电极材料,制成不对称电容器,这样可以拓宽电容器的使用电压范围,提高能量密度;另一类是赝电容电极材料和双电层电容电极材料混合组成复合电极,制备对称电容器。
一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对的电荷层就像平板电容器的两个平板一样。Helmholtz首次提出此模型。如图2所示。
能量是以电荷的形式存储在电极材料的界面。充电时,电子通过外加电源从正极流向负极,同时,正负离子从溶液体相中分离并分别移动到电极表面,形成双电层;充电结束后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。在放电时,电子通过负载从负极流到正极,在外电路中产生电流,正负离子从电极表面被释放进入溶液体相呈电中性。
双层电容器工作原理
对于一个对称的电容器(相同的电极材料),电容值为:
公式1
C1和C2分别为两个电极的电容值。单电极的电容计算公式:
公式2
其中:ε为双电层中的介电常数,A为电极的表面积,t是双电层的厚度。
双电层的能量及功率密度可通过下式分别计算得到(R为等效电阻):
公式3 公式4
根据以上两个公式可知:电容器工作电压的增大可以显著地提高功率密度和能量密度。
法拉第赝电容器也叫法拉第准电容,是在电极表面活体相中的二维或三维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附或氧化还原反应,产生与电极充电电位有关的电容。这种电极系统的电压随电荷转移的量呈线性变化,表现出电容特征,故称为"准电容",是作为双电层型电容器的一种补充形式。法拉第准电容的充放电机理为:电解液中的离子(一般为H+或OH-)在外加电场的作用下向溶液中扩散到电极/溶液界面,而后通过界面的电化学反应进入到电极表面活性氧化物的体相中;若电极材料是具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新回到电解液中,同时所存储的电荷通过外电路释放出来。
在电极的比表面积相同的情况下,由于法拉第赝电容器的电容在电极中是由无数微等效电容电路的网络形式形成的,其电容量直接与电极中的法拉第电量有关,所以法拉第赝电容器的比电容是双电层电容器的10-100倍,是对法拉第赝电容的研究工作成为一个重点开展的方向。
法拉第电容又称超级电容器、双电层电容器、黄金电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。
法拉第笼(Faraday Cage)是一个由金属或者良导体形成的笼子。是以电磁学的奠基人、英国物理学家迈克尔·法拉第的姓氏命名的一种用于演示等电势、静电和高压带电作业原理的设备。它是由笼体、高压电源、...
据我所知,西安有一家法拉第橱柜卖得比较好的,位于西安市雁塔区含光路南段南大明宫建材家居城 附近公交站:东仪路站-210路; 在东仪路站下车,沿电子二路直行112米,右转直行23...
您好 似乎在西安见过。能做到各地,说明还是不错滴。只是那种消费,至少不是偶这等流民能接受的。风格看自己喜欢的,一般来说品牌橱柜都是把目标群定在4-50岁的人群,有钱,式样花哨点就行了。风格有简约和欧式...
24.法拉第笼
实验二十四 法拉第笼 【仪器介绍】 法拉第笼是一个由金属 或者良导体形成的 笼子,是以电磁学的奠基人、英国物理学家迈克 尔·法拉第的姓氏命名的一种用于演示等电位、 静电屏蔽和高压带电作业原理的设备,可以演示 较大型的静电屏蔽,如图 24-1 所示。由笼体、高 压电源、电压显示器和控制部分(如图 24-2)组 成。其笼体与大地连通,高压电源通过限流电阻 将 10 万伏直流高压输送给放电杆。 【操作与现象】 表演时先请几位观众进入笼体后关闭笼门, 操作员接通电源,用放电杆进行放电演示。当放 电杆尖端距笼体约 10 厘米时,出现放电火花。 此时既使笼内人员将手贴在笼壁上, 使放电杆向 手指放电,笼内人员不仅不会触电,而且还可以 体验电子风的清凉感觉。围观的人感觉很震撼。 【原理解析】 导体在静电场中处于静电平衡时, 导体内部 没有宏观电场,电荷只分布在导体的表面上,导 体内部以及腔内的场强为零。
法拉第笼施工工艺标准
法拉第笼安装工艺标准 1、工艺流程 预埋接地端子 施工准备 屏蔽网天网施工 墙面屏蔽网施 工 地网施工 整个法拉第笼接地电阻测试 2、施工要点 ( 1)预留接地端子板根据图纸要求预留的端子数量及位置预留号接地端子,接 地板引出点距地 0.1m,所有室内(室外)引出的接地板间应保证可靠电气连接。 ( 2)六面屏蔽网施工 主体结构顶板施工:法拉第笼采用镀锌圆钢施工,并每隔不大于 5m将两根 Φ 10mm/Φ8mm的板内钢筋焊接作为法拉第笼屏蔽网主筋,保证形成连续电气通 路。其余拉筋部位钢筋焊成 0.6m*0.6m 的网格做法拉第屏蔽网, 0.6m*0.6m 的钢 筋网格与不大于 5m*5m的钢筋网格结合处焊接成闭合的电气通路, 并与结构柱内 预留接头焊接连通。如图所示。 砖砌体墙面四面施工:墙面内的法拉第笼网格施工采用不小于Φ 12mm镀锌 圆钢为主筋, 主筋间焊接成不大于 5m*5m网格,并
超级电容器(supercapacitor,ultracapacitor), 又叫电化学电容器(Electrochemical Capacitor, EC)、黄金电容、法拉第电容;包括双电层电容器(Electrostatic double-layer capacitor)和赝电容器(Electrochemical pseudocapacitor),通过极化电解质来储能。它是一种电化学元件、储能过程是可逆的,可以反复充放电数十万次。超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个电容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。
超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双电层理论基础上的一种全新的电容器。众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层。
它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离要小得多,因而具有比普通电容器更大的容量。
双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏器件,这一特点与铝电解电容器的过电压击穿不同。同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。
电容储能的机理为双电层电容以及法拉第电容 ,其主要形式为超级电容储能,超级电容器是介于传统电容器与电池之间的一种新型电化学储能器件,它相比传统电容器有着更高的能量密度,静电容量能达千法拉至万法拉级;相比电池有着更高的功率密度和超长的循环寿命,因此它兼具传统电容器与电池的优点,是一种应用前景广阔的化学电源。它主要是利用电极/电解质界面电荷分离所形成的双电层,或借助电极表面、内部快速的氧化还原反应所产生的法拉第“准电容”来实现电荷和能量的储存的。因此,超级电容器具有充电速度快、大电流放电性能好、超长的循环寿命、工作温度宽等特点。超级电容储能装置主要由超级电容组和双向DC/DC变换器以及相应的控制电路组成。