选择特殊符号
选择搜索类型
请输入搜索
PH 风速风向仪用于测量瞬时风速风向和平均风速风向,具有显示、自动、实时时钟、超限报警和数据通讯等功能。
风速风向仪风速测量部分采用了微机技术,可以同时测量瞬时风速、瞬时风级平均风速、平均风级和对应浪高等参数。它带有数据锁存功能,便于读数。风向部分采用了自动指北装 置,测量时无需人工对北,简化测量操作。本仪器为精密仪器,配备高级铝合金手提仪器箱(外形:300*200*160),为仪器提供良好保护,同时便于携带。本仪器体积小,重量轻,功能全,可广泛用于 农林、环保、海洋、科学考察等领域测量大气的风参数. 1、风向部分:由风向标、风向度盘(磁罗盘)等组成,风向示值由风向指针在风向度盘上的位置来确定。 2、风速部分:采用传统的三环旋转架结构,仪器内的单片机对风速传感器的输出频率进行采样、计算,最后仪器输出瞬时风速、一分钟平均风速、瞬时风级、一分钟平均风 级、平均风速及对应的浪高。测得的参数在液晶显示器上用数字直接显示出来。 1、风速技术指标测量范围0~30m/s 起动风速0.8m/s测量精度±(0.3+0.03v)m/s(v指示风速)风速参数瞬时风速、平均风速、瞬时风级、平均风级、及其对应浪高显示分辨率0.1m/s(风速)1级(风级)0.1m(浪高) 2、风向技术指标测量范围0~360度,16个方位起动风速1.0m/s测量精度±1/2方位风向定北自动3、工作环境温度-10~45°C湿度≦100%RH(无凝结) 4、供电电源3V(3.4~2.68V)5号电池2节5、尺寸和重量尺寸410x100x100立方毫米重量0.5kg技术指标 项 目 风速传感器 风向传感器
精 度 ±(0.3+0.03V)m/s ±6°(± 3°)
起动风速 ≤0.5m/s ≤0.5m/s
输出形式 方波 6位(7位)码(或电压)
工作电压 5V~12V 5V~12V
工作电流 10mA 20mA (或2~3mA)
工作环境 温度-60℃~50℃ 湿 度≤100%RH 温度-60℃~50℃ 湿度≤100%RH
风速传感器的感应元件是三杯风组件,由三个碳纤维风杯和杯架组成。转换器为多齿转杯和狭缝光耦。当风杯受水平风力作用而旋转时,通过轴转杯在狭缝光耦中的转动,输出频率的信号。
风向传感器的变换器为码盘和光电组件。当风标随风向变化而转动时,通过轴带动码盘在光电组件缝隙中的转动。产生的光电信号对应当时风向的格雷码输出。传感器的变换器可采用精密导电塑料电位器,从而在电位器活动端产生变化的电压信号输出。
风速仪的热敏式探头
是基于冷冲击气流带走热元件上的热量,借助一个调节开关,保持温度恒定,则调节电流和流速成正比关系。当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。以上现象可以在管道测量过程中观察到。根据管理管道紊流的不同设计,甚至在低速时也会出现。因此,风速仪测量过程应在管道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面不得有任何遮挡。(棱角,重悬,物等)
风速仪的转轮式探头
风速仪的转轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对转轮的转动进行"计数"并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。风速仪的大口径探头(60mm,100mm)适合于测量中、小流速的紊流(如在管道出口)。风速仪的小口径探头更适于测量管道横截面大于探险头横截面积100倍以上的气流。
风速仪在空气流中的定位
风速仪的转轮式探头的正确调整位置,是气流流向平行于转轮轴。在气流中轻轻转动探头时,示值会随之发生变化。当读数达到最大值时,即表明探头处于正确测量位置。在管道中测量时,管道平直部分的起点到测量点的距离应大于是0XD,紊流对风速仪的热敏式探头和皮托管的影响相对较小。
风速仪在管道内气流流速测量
实践证明风速仪的16mm的探头用途最广。其尺寸大小既保证了良好的通透性,又能承受更高达60m/s的流速。 管道内气流流速测量作为可行的测量方法之一,间接测量规程(栅极测量法)适用空气测量。
提供以下规程:
●方形截面栅极,测量普通规格
●圆形截面栅极,测量形心轴线规格
●圆形截面栅极,测量测程线性规格
风速仪在抽气排气中的测量
通气口会极大的变管道内气流相对均衡的分布状态:在自由通气口表面产生高速区,其余部位为低速区,并在栅格上产生旋涡。根据栅格的不同设计方式,在栅格前一定距离处(约20cm ),气流截面较为稳定。在这种情况下,通常采用大风速仪的口径转轮进行测量。因为较大的口径能够对不均衡的流速进行平均,并在较大范围内计算其平均值。
风速仪在抽气孔采用容积流量漏斗进行测量:
即使在抽气处没有栅格的干扰,空气流动的路线也没有方向,并且其气流截面极不均匀。其原因是管道内的局部真空,以漏斗状把空气中抽出在气室中,即使是在距离抽气很近的区域内,也没有一个满足测量条件的位置,可供进行测量操作。如采用带有平均值计算功能的栅极测量法进行测量,并借以确定容积流量法进行测量,并借以确定容积流量等,只有管道或漏斗测量法能够提供可重复测量结果。在这种情况下,不同尺寸的测量漏斗可以满足使用要求。利用测量漏斗可以在片状阀前一定距离处生成一个满足流速测量条件的固定截面,测出定位该截面中心并固定截面,测出定位该截面中心并固定截面,测出定位该截面中心并固定于此。流速测头得到的测量值乘以漏斗系数,即可计算出抽出的容积流量。(如漏斗系数20)
光电型的风向传感器采用低惯性轻金属的风向标响应风向,带动同轴码盘转动,此码盘按格雷码编码并以光电子扫描,输出对应风向的电信号。
光电型的风速传感器采用低惯性风杯,随风旋转,带动同轴截光盘转动,以光电子扫描输出脉冲串,输出相应于转数的脉冲频率对应值,便于采集及处理。强度高,起动好,符合国家气象计量标准;
风向传感器内置电子罗盘,自动定位方向角,即可在固定场所安装,也可以在移动场所(如特种车辆、轮船、钻进平台等)安装;
风速传感器的感应元件是三杯风组件,由三个碳纤维风杯和杯架组成。转换器为多齿转杯和狭缝光耦。当风杯受水平风力作用而旋转时,通过轴转杯在狭缝光耦中的转动,输出频率的信号。
风向传感器的变换器为码盘和光电组件。当风标随风向变化而转动时,通过轴带动码盘在光电组件缝隙中的转动,产生的光电信号对应当时风向的格雷码输出。传感器的变换器可采用精密导电塑料电位器,从而在电位器活动端产生变化的电压信号输出。
该仪器用途:1、测量当时风流动的方向2、测量当时风的流速3、辨别出当时流速达到多少级.
风速传感器的感应元件是三杯风组件,由三个碳纤维风杯和杯架组成。转换器为多齿转杯和狭缝光耦。当风杯受水平风力作用而旋转时,通过轴转杯在狭缝光耦中的转动,输出频率的信号。风向传感器的变换器为码盘和光电组件...
你好,利用发送声波脉冲,测量接收端的时间或频率(多普勒变换)差别来计算风速和风向的风速风向测量仪器>
该方式是测试处于通电状态下传感器因风而冷却时产生的电阻变化,由此测试风速。不能得出风向的信息。除携带容易方便外,成本性能比高,作为风速计的标准产品广泛地被采用。热式风速计的素子有使用白金线、电热偶、半导体的,但我公司使用白金卷线。白金线的材质在物质上最稳定。因此,长期安定性、以及在温度补偿方面都具有优势。
· 利用热线或热膜探头对低速气流的速度和湍流进行测量;
· 教学演示:如对典型流体动态现象的演示说明;
· 多点测量,应用于如对边界层和连续结构的研究。
微型恒温热线风速仪特性:
· 操作简便;
· 体积小;
· 可用电池供电;
· 非常适合用于场的测量;
· 可以内置于模型中;
· 提供针对其他热线和热膜探头的特殊应用版本。
微型恒温热线风速仪介绍:
微型恒温热线风速仪是一种对 DANTEC 气体热线和热膜探头的通用型风速。
它根据传统的恒温热线风速仪,并在其技术规格和性能上,针对在很多流体动力学应用场合发生的普通低速流而设计。它主要用于适度频率流场中的流速和湍流的测量,并尤其适用于教学目的,多点测量和场测量。
微型恒温热线风速仪描述:
有单通道和多通道(至多达 3 个 CTA 线路)版本。它通过 BNC 口的连接器连接,由一只 12V 直流电源适配器或电池供电工作。其带宽针对热线探头的使用做了优化(最大 10kHz ),但使用热膜探头也可以得到很好的操作性能。 MiniCTA 可允许使用的探头,其冷阻抗最大不超过 10Ω 。其过热比设置通过盒子内部的跳线开关来定义。
对过热比的设置可参考手册附带的软盘中的 EXCEL 文件。
2D 和 3D 系统的扩展:
带有 2 只或 3 只 MiniCTA 板卡的 3 通道仪器盒可与探头阵列一起用于的 2 维或 3 维流体的测量。仪器盒通过 3 只 BNC 连接器与探头连接,并另外有一个辅助 BNC 连接器用于外部传感器的输入。
多通道恒温热线风速仪--利用热线探头对流场的有效描绘
多通道恒温热线风速仪应用:
· 描绘气体中速度和湍流的分布;
· 使用探头阵列对连续结构的测量;
· 描绘湍流点以及边缘层流场的间隙流;
· 流场测量
多通道恒温热线风速仪特性:
· 同时可测多达 16 个点;
· 测量一维、二维、三维流体;
· 出厂的硬件设置直接可用;
· 通过系统温度探头记录偏移温度;
· 通过内置标准速度传感器进行多探头标定(选件)
多通道恒温热线风速仪介绍:
多通道恒温热线风速仪针对频率高达 10kHz 的低、中速气流的速度和湍流分布的描绘,提供了一种有效、可行的方案。多通道的概念来源于使用探头阵列进行测量,它减少了实验时间,并降低了昂贵的风洞运行成本。厂家硬件的设置使得用户操作友好简单。作为选件的标准速度传感器可用于标定多个探头。
多通道恒温热线风速仪由应用软件包支持运行。
多通道恒温热线风速仪描述:
多通道恒温热线风速仪分为 8 个
热线风速仪通道和 6 热线风速仪通道两个版本。CTA 通道安装固定在主机中,主机带有探头输入接口和与 NI 公司 A/D 板相适配的多针输出接口。主机由电源适配器或一节 12V 电池供电。可以把两台主机连接在一起以组成 16 通道系统。
6 通道版本另外还配有一个温度通道以便使用系统温度探头记录测量时的环境温度。这一版本也可以扩展带一个标准速度传感器,以便在诸如风洞的实验条件下进行多探头标定。
厂家缺省设置中的即时可用理念:
此系统可以直接使用标准热线探头,而不需要由用户来进行调整设置。对于热线探头的 overheat 阻抗,其通常的可用设置出厂时就已经处理好。而 Overheat ratio 在实际应用中在探头与探头之间可能会有少许的不同,所以设置中允许用户根据实际使用的探头对设置进行相应的调整。
探头通过 4m 或 10m 的标准探头电缆与主机后面板的 BNC 接口连接。状态指示灯和工作 / 等待转换开关在前面板,并且也带有用于监控的 BNC 接口。
输出信号通过一根传输电缆直接输入到 PC 机中的 A/D 板卡,而不需要另外的接线盒。
风速风向仪项目可行性报告-甲级资质
中金企信(北京)国际信息咨询有限公司—国统调查报告网 特别提示: 时间和数据按月 /季度随时更新 . 风速风向仪项目可行性报告 -甲级资质 国统调查报告网(即中金企信国际咨询公司)拥有 10 余年项目 可行性报告撰写经验, 拥有一批高素质编写团队, 卓立打造一流的可 行性研究报告服务平台为各界提供专业可行的报告 (注:可出具各类 项目的甲级资质)。 项目可行性报告用途 (企业投融资、国家发改委立项、银行贷款申请、 申请进口设备免税、境外投资项目核准、政府资金项目申报) 可行性研究报告是确定建设项目前具有决定性意义的工作, 是在 投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法, 在投资管理中,可行性研究是指对拟建项目有关的自然、 社会、经济、 技术等进行调研、分析比较以及预测建成后的社会经济效益。 由于可行性研究报告属于订制报告, 以下报告目录仅供参考, 成 稿目录可能根据客户
风速风向的移动测量系统设计
针对传统测风仪器无法直接用于移动条件下(如车载或船载时)的风速风向测量的问题,设计了一种可以在移动平台上应用的超声波风速风向测量系统。该系统使用超声波时差法测量平面内二维风向风速,同时使用霍尔传感器和电子罗盘测量基座的移动速度和方向,通过微处理器对测得的风速风向进行修正,得到实际风速和风向。系统采用ARM作为核心控制器,提高了时差的测量精度,并降低了功耗。
数据帧格式定义
采用Modbus-RTU 通讯规约,格式如下:
初始结构 ≥4 字节的时间
地址码 = 1 字节
功能码 = 1 字节
数据区 = N 字节
错误校验 = 16 位CRC 码
结束结构 ≥4 字节的时间
地址码:为变送器的地址,出厂默认0x01。
功能码:主机所发指令功能指示。
数据区:数据区是具体通讯数据,注意16bits数据高字节在前!
CRC码:二字节的校验码。
主机问询帧结构:
地址码 |
功能码 |
寄存器起始地址 |
寄存器长度 |
校验码低字节 |
校验码高字节 |
1字节 |
1字节 |
2字节 |
2字节 |
1字节 |
1字节 |
从机应答帧结构:
地址码 |
功能码 |
有效字节数 |
数据一区 |
数据二区 |
数据N区 |
校验码低字节 |
校验码高字节 |
1字节 |
1字节 |
1字节 |
2字节 |
2字节 |
2字节 |
1字节 |
1字节 |
寄存器地址:
寄存器地址 |
PLC或组态地址 |
内容 |
操作 |
定义说明 |
0000 H |
40001 (十进制) |
瞬时风速 |
只读 |
风速实时值(扩大100倍) |
0001 H |
40002 (十进制) |
风向 |
只读 |
风向实时值 (整数,正北方向为0°顺时针增加度数,正东方为90°) |
0002 H |
40003 (十进制) |
最大风速 |
只读 |
设备通电后最大风速 (扩大100倍) |
0004 H |
40005 (十进制) |
风力等级 |
只读 |
当前风速对应的风级值 (整数,0~17级) |
07D0 H |
42001 (十进制) |
设备地址 |
读写 |
1~254(出厂默认1) |
07D1 H |
42002 (十进制) |
设备波特率 |
读写 |
0代表2400 1代表4800 2代表9600 |
通讯协议示例以及解释
举例:读取变送器设备(地址0x01)的风速和风向实时值
问询帧
地址码 |
功能码 |
起始地址 |
数据长度 |
校验码低字节 |
校验码高字节 |
0x01 |
0x03 |
0x00 0x00 |
0x00 0x02 |
0xC4 |
0x0B |
应答帧
地址码 |
功能码 |
返回有效 字节数 |
风速实时值 |
风向实时值 |
校验码 低字节 |
校验码 高字节 |
0x01 |
0x03 |
0x04 |
0x00 0x7D |
0x00 0x5A |
0x EA |
0x10 |
实时风速计算:
风速:007D (十六进制)= 125 => 风速 = 1.25 m/s
实时风向计算:
风向:005A (十六进制)= 90 => 风向 = 东风
设备采用宽压 10~30V 直流供电,模拟量信号输出,4~20mA、0~5V、0~10V 可选,外壳防护等级高,可以适应现场环境恶劣的检测场合
主要技术参数:
直流供电(默认) |
10V~30V DC |
|
最大功耗 |
0.15W |
|
量程 |
风速 |
0~60m/s(可定制) |
风向 |
0~359° |
|
精度 |
风速 |
±(0.2m/s±0.02*v)(v为真实风速) |
风向 |
±3° |
|
分辨率 |
风速 |
0.01 m/s |
风向 |
1° |
|
工作环境 |
-40~60℃,0~100%RH |
|
抗风强度 |
75 m/s |
|
响应时间 |
1S |
|
防护等级 |
IP66 |
|
输出信号 |
4~20mA、0~5V、0~10V |
电流型输出信号转换计算
量程0~60m/s,4~20mA输出,当输出信号12mA时,计算当前风速。风速量程的跨度为30m/s,用16mA电流信号来表达,60m/s/16mA=3.75m/s/mA,即电流变化1mA风速变化3.75m/s.那么可以计算测量值测量值12mA-4mA=8mA.8mA*3.75m/s/mA=30m/s,则当前的风速=30m/s。
电压型输出信号转换计算
量程0~60m/s,以0-10V输出为例,当输出信号为5V时,计算当前风速。风速量程的跨度为60m/s,用10V电压信号来表达,60m/s/10V=6m/s/V,即电压每变化1V对应风速变化6m/s.测量值5V-0V=5V。5V*6/m/s/V=30m/s。则当前风速为30m/s。
GPRS型超声波风速风向仪
采用GPRS或者4G模式输出,无需现场布线,没有距离限制,设备安装的场所有网络即可远程监控数据。
带有数据锁存功能,便于读数。风向部分,采用了自动指北装置,测量时无需人工对北,简化测量操作。M290123便携式风速风向仪为精密仪器,配备高级铝合金手提仪器箱(外形:300*200*160),为仪器提供良好保护,同时便于携带。广泛用于农林、环保、海洋、科学考察等领域测量大气的风参数。
光电式风速风向仪