选择特殊符号
选择搜索类型
请输入搜索
反向代谢工程是一种采用逆向思维方式进行代谢设计的新型代谢工程。就是先在异源生物或相关模型系统中,通过计算或推理确定所希望的表型,然后确定该表型的决定基因或特定的环境因子,然后通过基因改造或环境改造使该表型在特定的生物中表达。
反向代谢工程也称逆代谢工程,在生物体代谢中起着不可或缺的作用。
代谢工程改造甘油代谢途径提高β-胡萝卜素产量
甘油是生物柴油的副产物,因其价格低廉和高还原性,成为生物发酵的重要碳源.为了进一步提高工程菌对甘油的利用能力,从而提高萜类化合物的合成能力,本研究从β-胡萝卜素高产菌CAR015出发,对其甘油代谢途径的多个基因进行了调控.首先敲除了编码3-磷酸甘油抑制子的glpR基因,然后分别用M1-37、M1-46和M1-93三个不同强度的人工调控元件对glpFK,glpD和tpiA三组基因进行单基因调控和多基因组合调控.研究发现用M 1-46调控glpD基因后p-胡萝卜素产量达到了64.82 mg/L,是CAR015的4.86倍,甘油消耗速率也提高了100%;调控tpipA基因后β-胡萝卜素产量略有提高;调控glpFK基因后p-胡萝卜素产量略有降低.说明G1pD是甘油代谢途径中的关键限速步骤.Q-PCR结果表明,降低甘油代谢途径的glpD和glpFK基因转录水平,增加tpiA基因转录水平,可以增加细胞生长速度、提高β-胡萝卜素产量,可能是因为减少了丙酮醛毒性所致.组合调控glpD和tpiA基因,获得β-胡萝卜素产量最高菌株Gly003,其p-胡萝卜素产量达72.45 mg/L,产率达18.65 mg/g每克干细胞,分别是出发菌株CAR015的5.23倍和1.99倍.总之,GlpD是甘油代谢途径中的关键限速步骤,适当强度调控glpD,可以有效提高重组大肠杆菌的p-胡萝卜素产量.
甲基营养菌代谢网络途径和代谢工程改造的研究进展
一碳化合物(甲醇或甲烷)高值化转化是当前生物工程领域的重要研究热点。甲基营养菌是一类以甲醇为碳源和能源生长的革兰氏阴性菌,随着基因组测序的开展和各类组学技术的发展,以扭脱甲基杆菌为代表的甲基营养菌的中心代谢网络途径和相关功能基因逐渐明晰。近年来,甲基营养菌中包括基因过表达、基因敲除整合等遗传操作工具的完善以及各种基因调控元件的开发,为甲基营养菌的底盘改造和异源途径优化表达提供了重要基础,国内外的研究推动了甲醇转化成多种高附加值产品。此外,人们渴望利用传统基因工程菌作为底盘构建合成型甲基菌,以期更高效实现甲醇催化转化。本文中,笔者综述了目前甲基营养菌,尤其是扭脱甲基杆菌的代谢网络特点、代谢工程改造策略与应用以及构建合成型甲基细菌这3个方面的研究进展,以期为甲基微生物催化转化的研究提供借鉴。
反向隔离是对加到器件输出端的信号与其输入端隔离程度的量度。反向隔离的测量类似于正向增益的测量,但有下述不同:
1.激励信号被加到放大器的输出端口
2.响应在放大器的输入端口被测量
其等效的S参数是S12。
理想的放大器应具有无穷大的反向隔离——没有信号被从输出端回传给输入端。然而,反射信号有可能在反方向通过放大器,这种不希望有的反向传输可能使反射信号干扰正方向上所要的基本信号流。因此,定量表示反向隔离是重要的。
反向通道是一种通讯连接,可使机顶盒与业务包装者或内容提供者之间进行通讯。这就使最终用户不仅能被动地接收信息,而且能与信息提供者进行交互。正是反向通道实现了基于DVB的增强业务。
实际上,反向通道通常是最终用户的电话线,机顶盒通过一个内置的调制解调器接入。因此反向通道是一个点到点的连接,与实质上是共享媒体性质的广播频道不使用同一介质。但是,有些有线电视网提供利用广播介质(电缆)的反向通道,可以设想在不久的将来,卫星网也可以做到这一点。