选择特殊符号
选择搜索类型
请输入搜索
本书主要介绍供电与电力牵引两个方面的内容,具体包括:高效电能传输线路、高效节能用电、轨道交通供电系统、电力牵引与电气计算、电力监控系统等。
第1章 供电与电力负荷计算 1
1.1 电力系统 2
1.2 工业企业供电系统 5
1.3 电力系统的额定电压 7
1.4 供电质量的主要指标 9
1.5 负荷曲线与负荷计算 11
1.6 用电设备的负荷计算公式 13
1.7 功率损耗和电能损耗 20
1.8 工业企业负荷计算公式 22
1.9 特高压输电 24
第2章 功率因数补偿技术 26
2.1 功率因数 27
2.2 提高功率因数的方法 29
2.3 并联电力电容器组提高功率因数 30
2.4 高压集中补偿提高功率因数的计算 33
2.5 简单线性电器的功率因数提高方法 35
第3章 三相短路电流及其计算 40
3.1 短路的原因、形式和危害 41
3.2 供电系统的短路过程分析 43
3.3 短路电流的计算 46
3.4 短路电流的效应 55
第4章 高压电器设备的选择 60
4.1 电器设备选择的原则 60
4.2 开关电弧 62
4.3 高压开关设备的选择 66
4.4 母线及绝缘子的选择 78
4.5 限流电抗器及选择 83
4.6 仪用互感器 85
第5章 电力线路 94
5.1 电力线路概述 94
5.2 架空线路导线的截面选择方法 99
5.3 电力电缆芯线截面选择与计算 109
5.4 电力电缆安装运行与维护 113
5.5 家用装饰电缆布局与导线选择 114
第6章 供电系统的保护 117
6.1 继电保护装置 117
6.2 继电保护装置的电源 119
6.3 电流互感器的误差曲线及连接方式 123
6.4 供电系统单端供电网络的保护 125
6.5 变压器的保护 132
6.6 高压电动机的过电流保护 134
6.7 低压配电系统的保护 137
6.8 供电系统备用电源自动投入与自动重合闸装置 140
6.9 供电系统的防雷与接地 144
6.10 我国电力系统保护的发展与现状 153
第7章 供电系统的信息化 157
7.1 供电系统信息化的基本功能 157
7.2 变电所信息化系统的结构和硬件配置 160
7.3 供电系统的微机保护 166
7.4 变电站信息化系统的应用 169
7.5 智能电能表 171
7.6 在电力行业中实现全过程控制与管理 173
第8章 电力系统CAD软件开发应用 175
8.1 电力系统CAD软件 175
8.2 CAD应用软件的开发方法 178
8.3 CAD软件的文档组织 183
8.4 电力系统CAD软件开发步骤 186
第9章 轨道交通供电系统 189
9.1 轨道交通 189
9.2 轨道交通供电系统简介 192
9.3 轨道交通供电系统的组成 198
9.4 轨道交通供电系统的特点 205
9.5 有轨电车 216
第10章 接触网 219
10.1 接触网的组成 219
10.2 柔性接触网 222
10.3 刚性接触网 232
10.4 接触轨 237
10.5 接触轨故障分析 248
第11章 电力牵引与电气计算 249
11.1 电力机车牵引特性 250
11.2 牵引计算 254
11.3 馈线电流 256
11.4 牵引网电压 264
11.5 CRH系列动车组简介 266
11.6 中国高速铁路网规划 270
11.7 中国时速为605千米/小时列车试验 273
第12章 电力监控系统 277
12.1 电力监控系统的基本组成功能 277
12.2 电力监控系统的硬件构成 279
12.3 电力监控系统的软件构成 281
12.4 电力监控系统在电力行业中的应用 283
参考文献 286 2100433B
主 编:钱爱玲 钱显毅
副主编:黄红云 邹一琴
书代号:417800
I S B N:978-7-5606-3886-7
出版日期:2016-06
印刷日期:2016-06
(1)直流系统正常运行情况下,设备绝缘良好,电流型框架保护电流回路电流为零,装置不动作。(2)当直流设备绝缘发生变化,设备对柜体外壳放电或短路时,电流回路电流达到整定值(大于80a),电流型框架保护动...
铁路电力牵引供电设计规范是由铁道部制定发行的。
电力负荷:电力系统中所有用电设备所耗用的功率。简称负荷。电力系统的总负荷就是系统中所有用电设备消耗总功率的总和。 电力系统的总负荷就是系统中所有用电设备消耗总功率的总和;将工业、农业、邮电、交通、...
电力牵引供电监理实施细则模板
1 电力牵引供电监理 实施细则 资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。 1 目录 1. 工程概况 ............................................................................ 错误!未定义书签。 2. 编制依据 ............................................................................ 错误!未定义书签。 3. 施工前的准备工作 ............................................................ 错误!未定义书签。 4.牵引变电所 ..............................................................
电力牵引网故障测距与录波微机综合系统
电力牵引网故障测距与录波微机综合系统
电力牵引供电计算(electric calculations for electric traction)是指为确定电气化铁路牵引供电系统一系列重要技术参数而进行的一整套计算工作,包括牵引供电设备需要容量计算、牵引供电网络阻抗计算、电压损失计算以及无功和谐波含量计算等 。
电力牵引供电系统是指从电力系统或一次供电系统接受电能,通过变压、变相或换流(将工频交流变换为低频交流或直流电压)后,向电力机车负载提供所需电流制式的电能,并完成牵引电能传输、配电等全部功能的完整系统。牵引供电系统的性能直接影响列车牵引功率的发挥和牵引传动控制系统的性能。
工频交流单相电力牵引供电系统主要由牵引变电所、牵引网、分区所、开闭所等部分组成。
直流制牵引变电所用主变压器降压并把三相交流电变换为6相或12相,然后用整流器整流。工频单相交流制在牵引变电所只进行降压,主要设备是降压变压器,称为主变压器。牵引变电所按主变压器绕组接线方式,分为三相、单相和三相-二相牵引变电所。
三相牵引变电所
它的主变压器结构与一般三相电力变压器相同,只是次边额定电压为27500伏。绕组通常采用 Y/△接线。用两台主变压器并联运行。原边Y形绕组接连电力系统的高压母线,次边△线绕组一端接地,另两端分别向两边的接触网供电(图1)。三相牵引变电所的优点是主变压器价格低廉,配电设备简单,可在27500伏侧用电力变压器降压至 10000伏向邻近地区和铁路的三相负荷供电。缺点是主变压器容量利用率较低,三相绕组中有一相达不到额定负荷。另外,牵引变电所对电力系统形成不对称负荷,通常须将各个牵引变电所的两个重负电荷相轮换接入电力系统中的三相。中国和苏联的工频单相交流制电气化铁路大都采用三相牵引变电所。
单相牵引变电所
采用单相双绕组主变压器。有两种接线方式:简单单相接线(图2)和V/V接线(图3)。V/V接线是将两台主变压器的原边接在高压母线不同的两相间,次边分别以不同的相电压向两边接触网供电。简单单相接线设备简单、经济,主变压器容量利用率高。但是由于牵引变电所对电力系统构成单相负荷,即使将各个牵引变电所轮换接入电力系统中的三相,在局部系统中仍将产生大量负序电流,所以只适宜于在电力系统容量较大的地区采用。单相V/V接线在电力系统中产生的负序电流和三相牵引变电所产生的相同,比简单单相接线产生的要小。这种接线也可在 27500伏侧应用降压变压器供应地区三相负荷。但是两台主变压器不是并联,操作手续和设备比较复杂。法国、英国、印度的工频单相交流制电气化铁路普遍采用单相牵引变电所,而且多采用简单单相接线。中国只在个别线路上采用单相V/V接线。
三相-二相牵引变电所
主变压器一般采用斯科特接线。 其原边有两个绕组,匝数比为1:3,短绕组(称为高绕组)接于长绕组(称为底绕组)的中点,三个出线端接高压母线的三相,形成“T”形接线(图4)。次边两个绕组输出对称二相电压,分别向两边接触网供电。斯科特接线的优点是,当两边接触网负荷相等时,主变压器从电力系统取用对称三相电流。缺点是要求特制的主变压器。另外,和简单单相接线一样,在27500伏侧不能供应地区三相负荷。三相-二相牵引变电所在日本应用最为广泛。
交流电气化铁路上为了增加供电的灵活性,提高运行的可靠性,在两个牵引变电所的供电区中间常加设分区所,分区所的作用可简述如下。
(1)可以使两相邻的供电区段实现并联工作或单独工作。当实现并联工作时,分区所的断路器闭合,否则打开。
(2)当相邻牵引变电所发生故障而不能继续供电时,可以闭合分区所的断路器,由非故障牵引变电所实行越区供电。
(3)双边供电的供电区内发生牵引网短路事故时,可由分区所的断路器切除事故点所在处的一半供电区,非事故段仍可照常工作。
交流电力牵引系统开闭所,实际上是起配电作用的开关站,一般在下面两种情况或系统中设置。
一种情况是在离牵引变电所较远的铁路枢纽地区,由于站线多,接触网相应复杂,客货运交会、编组和机车整备作业繁忙,致使该地区故障几率增多,为保证枢纽地区供电的可靠性,缩小事故范围,一般将接触网横向分组及分区供电,由开闭所的多路馈线向接触网各分组和分区供电。
另一种情况是在AT供电方式的复线牵引网供电臂中间设置开闭所,由于AT供电方式供电电压增高(2×25kV),供电臂距离增长,可达40~50km,为提高供电灵活性(如接触网停电检修等),缩小事故停电范围,故需在牵引变电所与分区所之间设置开闭所。
工频单相交流电气化铁路如采用自耦变压器(AT)供电方式时,在沿线需每隔10~15km设置一台自耦变压器。应尽量把自耦变压器设于沿铁路的各站场上,大致和铁路区间的距离一样。同时,应与分区所、开闭所合并,以便于运行管理。
接触网是 沿电气化铁路架空敷设的输电网,它和电力机车受电弓的滑动接触将牵引变电所送来的电流送给电力机车。
接触网主要由接触悬挂及其支柱组成。常用的有简单弹性悬挂和单链形悬挂。
简单弹性悬挂只有一根接触导线,用弹性吊弦挂在支柱上(图5 )。弹性吊弦可以缓和受电弓对悬挂点的冲击。这种悬挂可适应70~90公里/小时运行速度。接触导线弹性较好的,可适应100公里/小时以上的速度。接触导线材料具有耐磨、耐腐蚀、抗拉强度高和导电性能好等特点。多数国家主要采用铜导线和镉铜导线。中国广泛应用钢铝双金属导线。为了使接触导线有必要的张力,接触网每隔一定长度设置一个锚段,将接触导线一端下锚,另端吊挂一个载重体,称为补偿器。补偿器在季节变化引起接触导线冷缩热胀时自动上下移动,使接触导线张力保持不变。
单链形悬挂加用一根承力索,将接触导线用吊弦均匀地吊挂在承力索上(图6 )。对承力索采取补偿措施的称为全补偿单链形悬挂。这种结构的优点是接触导线平直,接触悬挂弹性均匀,因此受电弓和导线有较好的接触,受流较好,适用于运行频繁、运行速度较高的线路。直流制电气化铁路接触网普遍采用两根接触导线和单链形悬挂。交流制接触网采用一根接触导线和单链形悬挂或简单弹性悬挂。中国主要采用单链形悬挂,但也开始采用简单弹性悬挂。还有一种复链形(双链形、三链形)悬挂(图7),是在单链形悬挂的承力索和接触导线之间加设一条辅助承力索,用吊弦挂在承力索上,再把接触导线挂在辅助承力索上。这种结构使接触悬挂弹性更加均匀,适应更高的运行速度。日本东海道新干线采用弹性双链形悬挂。
早期的接触网大都使用金属支柱,后来改用钢筋混凝土支柱。这种支柱省钢材,耐腐蚀,造价较低。接触悬挂挂在支柱的金属腕臂上,用定位器来固定接触导线的水平位置,使接触导线沿线路成“之”字形走向,以免运行中的电力机车受电弓集中在一点被接触导线擦伤。
供电方式
直流制电气化铁路接触网普遍采用两边供电方式,在相邻的两个牵引变电所供电的接触网中间设置分区亭,将接触网连通。运行中的电力机车由两边的牵引变电所同时供电。这种供电方式可降低接触网中的电能损失,减小接触网的电压降,一个牵引变电所停电时,电力机车运行不致中断。交流制电气化铁路则常采用一边供电方式,接触网在分区亭处断开,分区亭只在一边牵引变电所停电时接通,由另一边牵引变电所越区供电,同时分 区亭还有上下行末端并联的功能。
防干扰设施
为了减少接触网电流的电磁感应对沿线通信电路的干扰,在交流制电气化铁路邻近城镇的区段将接触网每2~4公里划成一个吸流分段,设置回流线和吸流变压器。这时,电力机车的电流沿回流线流回牵引变电所,从而沿轨道和大地流回的电流很少。回流线和接触网的电流近似相等,方向相反,这就大大减轻了电气化铁路对沿线通信电路的干扰。这种方式的缺点是吸流变压器串接在电路中,加大了接触网阻抗。日本新建设的工频单相交流制电气化铁路采用了自耦变压器方式,沿铁路每10公里左右设置一台自耦变压器。自耦变压器中性点接地,一端接接触网,另一端接回流线,称为正馈(电)线。正馈线和接触网电流大小相等,方向相反,同样起着减小对通信电路干扰的作用。另一方面,由于接触网和正馈线之间电压为二倍接触网电压,沿接触网电压降便大大减小。
电力牵引CC供电方式(coaxial cable supply system of electric traction)是指电力牵引的一种供电方式,又称同轴电缆供电方式 。