选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

GGH

GGH
据初步推算国内火电厂石灰石-石膏湿法烟气脱硫系统采用烟气-烟气再热器(GGH)的约占80%以上。若按每年新增石灰石-石膏湿法烟气脱硫系统容量30,000MW计算,安装GGH的直接设备费用就达10亿元左右。如计及因安装GGH而增加的增压风机提高压力、控制系统增加的控制点数、烟道长度增加和GGH支架及相应的建筑安装费用等,其总和约占石灰石-石膏湿法烟气脱硫系统总投资的15%左右.

GGH基本信息

GGH利弊分析

1. 前言

据初步推算国内火电厂石灰石-石膏湿法烟气脱硫系统采用烟气-烟气再热器(GGH)的约占80%以上。若按每年新增石灰石-石膏湿法烟气脱硫系统容量30,000MW计算,安装GGH的直接设备费用就达10亿元左右。如计计因安装GGH而增加的增压风机提高压力、控制系统增加的控制点数、烟道长度增加和GGH支架及相应的建筑安装费用等,其总和约占石灰石-石膏湿法烟气脱硫系统总投资的15%左右.

GGH是否是石灰石-石膏湿法烟气脱硫系统的必不可少的设备?如何根据电厂的实际情况来决定是否需要安装GGH?工业发达国家的烟气脱硫装置是否都安装GGH?如何合理使用来之不易的环保投资?这是国家主管部门与业主都十分关注的问题。本文就此提出初浅的看法,仅供参考。

2.GGH的利弊分析

2.1 GGH的作用

2.1.1 提高排烟温度和抬升高度

烟气再加热可以将湿法烟气脱硫的排烟温度从50℃升高到80℃左右,从而提高烟气从烟囱排放时的抬升高度。根据对某电厂的实际案例的计算,对于2x300MW机组合用一个烟囱,烟囱高度为210m,在环境湿度未饱和的条件下,安装和不安装GGH的烟气抬升高度分别为524m和274m,有明显的差异。

但是,从环境质量的角度来看,主要的关注点是在安装和不安装GGH时,主要污染物(SO2、粉尘和NOX)对地面浓度的贡献。在同一个案例中,对此进行了计算,计算结果见下表。

污染物

SO2

国家二级标准限值

(0.15mg/Nm3)

粉尘

国家二级标准限值

(0.15mg/Nm3)

NOx

国家二级标准限值

(0.12mg/Nm3)

日均值/标准值

有GGH

无GGH

有GGH

无GGH

有GGH

无GGH

1.13%

2.57%

1.99%

4.51%

4.30%

9.74%

污染物的最大落地浓度点到烟囱的距离,安装和不安装GGH分别为10529m和6689m。

从以上的计算结果可以看出,由于SO2和粉尘的源强度在除尘和脱硫之后大大降低,因此无论是否安装GGH,它们的贡献只占环境的允许值的很小一部分。由于FGD不能有效脱除NOx,NOx的源强度并没有降低,因此是否安装GGH对于NOx的贡献有较大的影响,但是从上表看出,仍然只占环境的允许值的10%,因此对环境的影响不会很显著。实际上,降低NOx对环境的影响的根本措施还是在安装脱硝装置,通过扩散来降低落地浓度,只是一种权宜之计。

2.1.2 减轻湿法脱硫后烟囱冒白烟问题

由于安装了FGD系统之后从烟囱排出的烟气处于饱和状态,在环境温度较低时凝结水汽会形成白色的烟羽。在我国南方城市,这种烟羽一般只会在冬天出现;而在北方环境温度较低的地区,出现的几率会更大。

安装FGD之后出现白烟问题是很难彻底解决的。如果要完全消除白烟,必须将烟气加热到100℃以上。安装GGH后排烟温度在80℃左右,因此只能使得烟囱出口附近的烟气不产生凝结,使白烟在较远的地方形成。

白烟问题不是一个环境问题,而是一个公众的认识问题,更何况与冷却塔相比,烟囱的白烟是很少的。因此加强对公众的宣传和沟通,应该不会成为重大的障碍。

2.2 GGH能否减轻下游设备腐蚀的讨论

在上世纪80-90年代,由于对FGD工艺的性能有一个逐步深化的过程,当时认为烟气通过GGH加热之后,烟温升高,可以降低脱硫后烟气对下游设备的腐蚀倾向。但是,经过此后的实践证明,由于烟气在经过GGH加热之后,烟温仍然低于其酸露点,仍然会在下游的设备中产生新的酸凝结。不仅如此,由于随温度上升液体的腐蚀性会大大增强,烟温升高更加剧了凝结液的腐蚀倾向,使得经GGH加热后的烟气有更强的腐蚀性。因此认为采用GGH后可以不对下游烟道和烟囱进行防腐的概念是错误的。主要的原因如下:

- FGD系统不能有效地去除SO3,而SO3是决定烟气酸露点的主要成分;

- 安装GGH后,烟气中的飞灰会积聚在GGH的换热元件上,飞灰中的重金属会起催化剂的作用,将烟气中的部分SO2转化为SO3,尽管数量不多,但是对升高烟气的酸露点是有影响的。有测试表明,在GGH后面,SO3的含量有所增加;

- 测试发现,经过FGD脱硫以后的烟气的酸露点温度在90-120℃范围内,而烟气再热之后的温度在80℃左右,因此在FGD下游设备表面上,仍然会产生新的酸凝结液;

- 经GGH加热后的烟气温度高于烟气的水露点,因此可以防止新的凝结水的产生,但是80℃这样的低温烟气,无法在很短的时间内,将已经凝结在烟道或烟囱表面上的水或穿过除雾器的浆液快速蒸干,只能使这些液滴慢慢地浓缩、干燥。这个过程使得原来这些酸性不强的液滴,变成腐蚀性很强的酸液,在烟道和烟囱上形成点腐蚀;

- 由于烟气经过GGH再热以后温度升高,造成烟道和烟囱中的环境温度要比不安装GGH时高约30℃。酸对金属材料的腐蚀作用对温度是非常敏感的,温度升高会使得凝结酸液得腐蚀性更强。

因此,认为安装GGH后可以减轻脱硫烟气对下游设备的腐蚀是一个认识上的误区。另外,无论是否安装GGH,湿法FGD的烟囱都必须采取防腐,并按湿烟囱进行设计。这一点已经被国外几十年来的实践所证实。认为安装了GGH就可以不对烟囱进行防腐处理是错误的。

2.3 安装GGH带来的问题

由于FGD系统多数采用回转式GGH,因此下面的讨论主要是针对这类GGH的,但是对其它类型的GGH,如水媒式、蒸汽换热器等,其结论也是适用的。

- GGH设备本体以及由GGH引发的直接投资,包括烟道、支架和冲洗系统的费用大约是FGD总投资的15%;

- GGH本体对烟气的压降约在1000Pa,如果考虑到由于安装GGH而引起的烟道压降,总的压损约在1200Pa左右。为了克服这些阻力,必须增加增压风机的压头,使FGD系统的运行费用大大增加;

- GGH的原烟气侧向净烟气侧的泄漏会降低系统的脱硫效率,尽管回转式GGH的原烟气侧和净烟气侧之间的泄漏可以达到1.0%以下,但毕竟是一种无谓的损失;

- 由于原烟气在GGH中由130℃左右降低到酸露点以下的80℃,因此在GGH的热侧会产生大量的粘稠的浓酸液。这些酸液不但对GGH的换热元件和壳体有很强的腐蚀作用,而且会粘附大量烟气中的飞灰。另外,穿过除雾器的微小浆液液滴在换热元件的表面上蒸发之后,也会形成固体的结垢物。上述这些固体物会堵塞换热元件的通道,进一步增加GGH的压降。国内已有电厂由于GGH粘污严重而造成增压风机振动过大的前鉴;

- GGH在运行过程和停机后需要用压缩空气。蒸汽和高压水进行冲洗,以去除换热元件上的积灰和酸沉积物。因此需要提供相应的压缩空气、冲洗水和蒸汽。GGH冲洗后的废水含有很强的腐蚀性,必须进行专门的处理之后才能排放。

3.不安装GGH的利弊分析

3.1 不安装GGH的优点

3.1.1 降低FGD系统的投资和运行费

以下的技术经济比较以2x300MW机组的FGD系统为基础。煤耗按两台机组280t/h,煤的含硫量为1%,FGD系统每年脱除的SO2为44800t。

(1)固定资产投入

安装GGH固定资产投入约2000万,贷款利率按5%计算,5年还清本利,共计2500万。FGD的寿命为20年,因此,均化后每年的固定资产投入为125万。因固定资产投入使得脱硫成本的增加为:

1250000/44800000 = 0.028元/kg SO2

(2)电耗

安装GGH之后,由于GGH本体和烟道的阻力的增加,约使增压风机的功率增加2x1500kW,按年运行6000小时,厂用电价为0.3元/kWh计算,每年增加的电耗支出为:

2x1500x6000x0.3 = 540万元

因电耗而使得脱硫成本增加:

5400000/44800000 = 0.120元/kg SO2

(3)大修费用

大修费率按: 固定资产原值x2.25% 计算。

2000x2.25% = 45 万元

因大修费用而增加的脱硫成本为:

450000/44800000 = 0.010元/kg SO2

安装GGH后费用的增加见下表:

No.

项目

单位

数量

价格

年增加费用

(万元)

脱硫成本增加

(元/kg)

1

电耗

kW

3000

0.30元/kWh

540

0.120

2

固定资产投入

万元

注1

2500

125

0.028

3

大修费用

%

2.25

45

0.010

4

合计

710

0.158

注1:年利率5%,5年还清本利,年增加费用按寿命期20年均化

如果按FGD 的寿命为20年计算,在FGD的整个寿命期内,总的费用为1.42亿元,几乎相当于2x300MW的FGD的总投资。

3.1.2 提高系统的运行可靠性和可用率

安装GGH后,由于GGH部件的腐蚀和换热元件堵塞造成的增压风机的运行故障已经成为FGD系统长期稳定运行的瓶颈之一,降低了FGD系统的可用率,增加了维修费用。由于不安装GGH后,FGD的烟气系统得以简化,因此FGD系统的可靠性有了提高,达到高可用率运行。

3.2 不安装GGH带来的问题

- 由于需要对原烟气的降温幅度有所增加,因此系统的水耗要比安装GGH时约增加50%左右;

- 由于净烟气温度较低,因此在环境空气中的水分接近饱和,而且气象扩散条件不好时,烟气离开烟囱出口时会形成冷凝水滴,形成所谓“烟囱雨”,在烟囱周围的地面上,有细雨的感觉;

- 由于FGD系统不能有效去除NOx,因此必须对在取消GGH之后的NOx的落地浓度和最大落地浓度点离烟囱的距离进行核算,并取得有关环保部门的批准;

- 不安装GGH的FGD系统的烟气在烟囱中的凝结水量会比较大,因此在进行湿烟囱设计时必须注意。

4.国外情况

4.1 德国

德国大规模建设FGD的时间是在上世纪的80-90年代,由于当时法规的要求,烟气的排放温度不得低于72℃,因此在此期间建设的FGD系统全部安装了GGH,而且主要是回转式GGH。经过多年的运行,发现GGH是整个FGD系统的故障点,大大影响了系统的可用率。按照德国公司的介绍,几乎100%的GGH在运行过程中都出现了故障。

德国加入欧盟以后,大部分欧盟成员国均对烟气排放的温度没有法规上的要求。因此,从2002年开始,德国采用欧盟的标准,取消了对烟气排放温度的限制。因此在原东德地区近期建设的FGD已有部分系统不再安装GGH了。德国脱硫公司认为,不安装GGH是今后FGD发展的趋势。

德国已经有越来越多的在有条件的电厂将脱硫后的烟气通过冷却塔排放,这样既可以不安装GGH,又可以省去湿烟囱的投资,而且也大大提高了烟气污染物的扩散能力。

4.2 美国

美国的法规从来没有对排烟温度有限制,因此美国的FGD系统只有少部分安装了GGH。一些美国电厂考虑到由于不安装GGH,烟温过低时对周围环境可能产生不利影响,采用了在烟囱底部安装燃烧洁净燃料的燃烧器,在气象条件不利于扩散时,对脱硫后的烟气进行临时加热。这种方法的投资很低,运行费用也很低,同时,也保护了环境质量,是一种结合实际的解决方案,值得我们借鉴。

4.3 日本

由于日本是一个面积小,地形狭长的岛国。为了减轻对日本本土的污染,一直采用高烟温排放,以增强烟气的扩散能力。因此几乎所有的FGD系统全部安装了GGH。

5. 小结

5.1 在FGD系统中安装GGH是FGD早期发展过程中的认识,长期的实践已经证明:GGH在FGD系统中的作用不大,但是由此带来的负面影响却很大;

5.2 湿法FGD所排放净烟气的烟囱都必须采用防腐措施,与是否安装GGH无关。因此,认为安装GGH后可以不对烟囱采取防腐措施,并以此节省烟囱防腐所需费用的观点不但是错误的,而且是危险的;

5.3 GGH的投资和运行费用非常昂贵,对于2x300MW机组的投资费用为2000万元,约占FGD系统总投资的15%,年运行费用约530万。注意:建设一个防腐性能良好可以长期使用的湿烟囱的防腐费用大约为1500万

5.4 根据国内已经投入使用的GGH的运行情况来看,许多GGH的运行情况均不佳,由于运行时间尚短,腐蚀的问题还没有暴露出来,因此主要的问题是换热元件堵塞,造成FGD系统停运。因此GGH将会给FGD的正常运行造成困难。

5.5 由于不安装GGH致使NOx排放对地面浓度的贡献有所增加的问题,主要应该依靠安装烟气脱硝装置来解决,而不应考虑强制要求安装弊多利少的GGH来回避问题。从经济角度来看,取消GGH之后节省的投资和运行费用,有可能补偿安装烟气脱硝所需的投资费用。这样可以削减NOx的排放总量(而不是仅仅依靠扩散来降低NOx的地面浓度),达到治本的目标。

5.6 安装 GGH后对于减轻湿烟囱周围地区的烟囱雨和烟囱冒白烟的问题有一定效果,因此,在一些对环境要求非常严格的地区的火电厂,是否在湿法烟气脱硫系统中安装GGH应在相应的环评中进行专题分析,并予以明确;应允许一般的电厂不安装GGH。 2100433B

查看详情

GGH造价信息

  • 市场价
  • 信息价
  • 询价

控制电器

  • FR6-GGH 机械连锁 水平安装附
  • 德力西
  • 13%
  • 贵州省都匀市大洋电力物资有限公司
  • 2022-12-06
查看价格

控制电器

  • FR6-GGH 机械连锁 水平安装附
  • 德力西
  • 13%
  • 德力西集团兴义欧泰销售有限公司
  • 2022-12-06
查看价格

烟气再加热器

  • 1级GGH
  • 3.0台
  • 1
  • 不含税费 | 不含运费
  • 2015-08-07
查看价格

高温烟气换热器

  • 2GGH 列管式
  • 3.0台
  • 1
  • 不含税费 | 不含运费
  • 2015-08-07
查看价格

GGH作用

GGH,它的作用是利用原烟气将脱硫后的净烟气进行加热,使排烟温度达到露点之上,减轻对进烟道和烟囱的腐蚀,提高污染物的扩散度;同时降低进入吸收塔的烟气温度,降低塔内对防腐的工艺技术要求。

查看详情

GGH常见问题

查看详情

GGH文献

GGH技术规范书解析 GGH技术规范书解析

GGH技术规范书解析

格式:pdf

大小:524KB

页数: 54页

黄埔电厂 “上大压小 ”环保示范燃煤工程 GGH 设备招标文件 I 黄埔电厂 “上大压小 ”环保示范燃煤工程 (2×600MW超超临界机组)工程 GGH 采购招标文件 技术规范书 招标编号: 2008年 06月 黄埔电厂 “上大压小 ”环保示范燃煤工程 GGH 设备招标文件 II 目 录 第一章 技术规范 ....................................................................................................... 4 1、总则 ......................................................................................................................... 4 2、设计条

烟气换热GGH说明书 烟气换热GGH说明书

烟气换热GGH说明书

格式:pdf

大小:524KB

页数: 33页

一、烟气再热器( GGH)概述 豪顿旋转再生式烟气再热器是设计用于脱硫( FGO)系统的。它 在相对较小的空间内包含了一个很大的换热面。 该换热面吸收进入吸 收塔之前的末处理烟气热量,将进入烟囱前的处理烟气再次加热。 在再生式热交换器内,换热元件被流经它的气流依次加热和冷 却。在不同时间热、冷气流流经同一区域,这样再生体(换热元件) 就从热气流吸热后再将热量传递给冷气流,这一点与同流换热器不 同。这一过程可以是周期性的。 如果象豪顿烟气再热器那样的再生体 旋转,该过程也可以是连续的。 烟气再热器内, 末处理的烟气流经再热器的一侧, 处理后的烟气 流经另一侧。 再热器缓慢转动使得经特殊设计的换热元件依次经过热 的末处理烟气流和冷的处理烟气流。当换热元件经过末处理烟气侧 时,未处理烟气携带的一部分热量就传递给换热元件; 而当换热元件 经过处理烟气侧时又把热量传递给处理烟气。 这样,末处理

脱硫系统烟气换热器GGH

国内外目前普遍采用的脱硫方法为湿式石灰石—石膏法烟气脱硫技术,90%以上的国内外火电厂脱硫技术均采用此种方法,在该工艺中,选择既经济又高效可行的烟气换热装置是脱硫工艺中的关键环节,利用未脱硫的高温烟气通过换热器去加热脱硫后的净烟气,使净烟气从40℃被加热到提升烟气的抬升高度。利用脱硫换热器既可以回收高温烟气的热量、节省能源,又可以保证脱硫塔的正常工作、减少水消耗,同时提高脱硫塔的脱硫效率、降低对大气的二次污染。

该换热器有一个矩形的外壳,内部由许多单根热管组成,热管的布置形式可以是错列呈三角形的排列,也可以是顺列呈正方形的排列。在矩形壳体内部的中央有一块管板(中孔板)把壳体分成两部分,形成高温流体(原烟气)和低温流体(净烟气)的通道。当高、低温流体同时在各自的通道中流过时,热管就将高温流体(原烟气)的热量传给低温流体(净烟气),实现了两种流体的热交换,使原烟气的温度降低达到去吸收塔的温度,净烟气的温度升高满足排放的要求。在换热器中,热管数量的多少取决于换热量的大小,为提高换热系数,在热管上缠绕翅片,这样可使所需的热管数目大大减少。因此,采用热管式GGH换热装置具有较强的经济意义和社会意义。

脱硫系统烟气换热器结构特点

1) 中间管板的密封

热管式GGH中中孔板是分隔原烟气与净烟气的隔板,不使原烟气与净烟气串流, 其密封性要求较高。设计时采用密封圈和锥面线密封对原烟气与净烟气加以双重密封,确保密封的可*性。

为了确保热管在运行中热膨胀及振动引起的密封破坏,保证中孔板的严格密封,在每根热管的顶部(或底部)用弹簧对热管进行压紧(或拉紧),确保万无一失。

(2)热管的热膨胀

热管式GGH中每根热管只有一个固定点,该固定点在中孔板处,其两端均可自由膨胀,因此热管的膨胀不会对换热器产生危害。

脱硫系统烟气换热器清灰方式

考虑到整个脱硫系统中烟气的含尘量较高,在设备中,为提高传热效率,热管仍采用错排形式,但管外缠绕的翅片采用了大螺距、低翅高形式。为考虑清灰,设备内按一定间距布置了若干组吹灰管束,并且配备激波或声波吹灰器接口。同时,在换热器的冷、热流体通道中每隔4-6排管排就留出人行通道,必要时可采取人工进入彻底清灰,也利于设备的内部维护。 设备底部和中部均留有排污口和排液口,方便清灰处理和及时排污。

脱硫系统烟气换热器烟气速度

选择合适的烟气流动速度,达到自清灰性能。一般说来,能使热管具有自清灰性能的风速范围是8-12 m/s,热管式GGH中,在满足烟气阻力降的要求下,烟气流速控制在9-10 m/s之间,说明该设备在正常运行时,能达到自清灰的作用。

脱硫系统烟气换热器防腐处理

在烟气脱硫技术中,除干法外,其它脱硫方法均要解决装置的腐蚀与防护问题。在热管式GGH中同样也存在腐蚀问题,可以采取以下措施:

(1)合理控制热管壁温

根据热管的特点,通过调整冷、热侧的传热面积比,使热管工作在“允许腐蚀区域”。

根据国内外的试验证明腐蚀速度并不是简单地随着温度的降低而增加,而是如图2所示的关系。从图中可以看出,在酸露点的腐蚀程度并不高,最高腐蚀点出现在接近酸露点处;然后随着温度的继续降低,腐蚀程度也迅速下降,直至最低腐蚀点;再继续降低温度,腐蚀程度又会增加。

这说明,在酸露点以下存在着一个腐蚀速度很小的区域—“允许腐蚀区域”。如果受热面工作在这个区域内,就可以把腐蚀降低到最小。这样可以通过调整热管冷热侧的传热面积比,使热管工作在“允许腐蚀区域”。

(2) 选用合适的管材

换热器中热管元件采用耐腐蚀ND钢管。目前,ND钢管是专门用于耐硫酸低温露点腐蚀的材料,可以降低腐蚀速率,延长使用时间。

(3) 烧镀搪瓷(搪玻璃)或镀陶瓷技术的采用

在热管的外表面采用烧镀搪瓷或陶瓷的技术来防止其低温露点的腐蚀。

搪瓷传热元件是在普通碳钢(翅片管)外涂一层耐酸搪瓷。由于搪瓷层很薄,一般厚度为0.2mm,与碳钢结合紧密,对传热效果影响很小,搪瓷管的传热系数≥48.38W/(m2℃),

与碳钢管相比,相对降低率<7.14%;且搪瓷表面光滑,不易结垢和积灰,又耐磨损、抗腐蚀;投资费用较选用耐酸不锈钢有明显的降低。

由于采用了烧镀搪瓷的技术对热侧的换热面进行了处理,在正常操作状态下,热管式GGH中热管元件能有效地保证连续工作。

(4) 壳体的防腐处理

在换热器壳体内,原烟气、净烟气通道均采取措施,可以采用内衬鳞片衬里。该技术目前已成为烟气脱硫防腐的首选技术,在美国和日本普遍使用,我国现运行的引进装置中均采用此技术。鳞片衬里具有抗渗性好,施工难度小,易修补,物理失效少等优点。

脱硫系统烟气换热器整体式热管GGH

根据热管换热器的特点,热管式GGH可以有多种布置形式。

(1)立式热管GGH,原烟气、净烟气分别在换热器的下部烟道和上部烟道,采用逆流布置,实现冷、热流体的热交换。

(2)斜置式热管GGH,原烟气、净烟气分别在换热器的左下部烟道和右上部烟道,采用逆流布置,实现冷、热流体的热交换。这里,热管采取倾斜放置,这种布置形式更有利于清灰处理。

脱硫系统烟气换热器分离式热管GGH

原烟气、净烟气分别采用两个独立的箱体,每台壳体内均装有若干片由翅片管和上、下联箱组焊而成的彼此独立的热管管束。如图3所示。受热段和放热段相对应的各片管束通过蒸汽上升管和冷凝液下降管连接,构成各自独立的封闭系统。这里,受热段与放热段分离开来,用蒸汽上升管和冷凝液下降管将它们联接,组成了具有热管传热效应的又一结构形式。当管束内部形成一定的真空度后,热流体通过受热段(原烟气换热器)时,受热段管束内的工质吸收热量后汽化,产生的蒸汽汇集受热段上部的上联箱内,经蒸汽上升管输送到冷流体通过的放热段(净烟气换热器)的管束内,受管外冷流体的作用,蒸汽冷凝放出的凝结潜热将管外的冷流体(净烟气)加热,蒸汽冷凝后的液体汇集放热段下部的下联箱内,在位差的作用下,通过冷凝液下降管回到受热段管束内继续蒸发。如此往复循环进行,从而完成热量由受热段到放热段的输送。

其特点:

(1)装置的原烟气侧和净烟气侧可视现场情况而分开布置,可实现远距离传热,这就给工艺设计带来了较大的灵活性,也给装置的大型化、热能的综合利用以及热能利用系统的优化创造了良好的条件;

(2)工作介质的循环是依*冷凝液的位差和重力作用,不需要外加动力,无机械运行部件,增加了设备的可*性,也极大地减少了运营费用;

(3)原烟气侧和净烟气侧彼此独立,易于实现流体分隔、密封。

(4) 受热段与放热段管束可根据冷、热流体的性能及工艺要求选择不同的结构参数和材质,从而可有效地解决设备的露点腐蚀和积灰问题;

(5) 根据工艺要求,可以将流体顺、逆流混合布置,以适应较宽的温度范围;

(6) 系统换热元件由多片热管管束组成,各片之间相互独立,因此,其中一片甚至几片损坏或失效不会影响整个系统的安全运行

查看详情

脱硫增压风机脱硫系统中增压风机的位置

引风机是放在电除尘后面。增压风机有四种布局方式:第一种:GGH原烟气侧之前;第二种:GGH原烟气侧与吸收塔之间;第三种:吸收塔与GGH净烟气侧之间;第四种:GGH净烟气侧之后。

优缺点:

第一种:由于烟气流量大,增压风机功耗最大,但是高温烟气温度在酸露点之上,不用考虑增压风机的腐蚀问题,对增压风机材料要求低。吸收塔为正压运行,对提高除雾器效果有利。这种方式是被广泛采用。

第二种:烟气温度低,必须考虑防腐问题。另外风机的功耗较小。但是由于风机本身的热阻,会造成烟气温度高,降低脱硫效率。

第三种:此时风机多称为“湿风机”,烟气对风机的腐蚀最强,对风机材料要求较高,增加成本投入,检修频繁。此时吸收塔为负压运行,有利于氧化空气进入吸收塔。容易造成烟气二次带水,污染除雾器和下游管道。

第四种:烟气较为干燥,风机功耗适中,但同样需要高强度的防腐材料增加成本。

查看详情

大型火电设备手册:除灰与环保设备图书目录

前言

本书编写说明

第一章 脱硝系统设备

一、300~1000MW等级选择性催化还原法(SCR)脱硝装置

二、中国华电工程(集团)有限公司脱硝装置

第二章 脱硫系统设备

第一节 吸收塔

三、华电吸收塔

第二节 回转再生换热器

四、上海锅炉厂有限公司回转再生式换热器

五、东方锅炉(集团)股份有限公司回转式烟气换热器(GGH)

六、哈尔滨锅炉厂有限责任公司烟气换热器(GGH)

七、VN回转式烟气换热器(GGH)

第三节 挡板门

八、脱硫岛关闭挡板门

第四节 其他

九、烟风道隔绝门

十、JFH型隔声罩

第三章 除尘系统设备

第一节 袋式除尘器

十一、脉冲袋式除尘器

第二节 静电除尘器

十二、兰州电力修造厂静电除尘器

十三、浙江菲达静电除尘器

第三节 复合式除尘器

十四、电一袋复合式除尘器

第四章 灰渣输送系统设备

第一节 管中管气力输灰系统及设备

十五、管中管气力输灰系统

十六、CP型仓泵

十七、进料圆顶阀

十八、气动薄型闸阀

十九、空气管路流量调节阀

二十、气灰混合器

二十一、TG型电动锁气器

二十二、TSL型双轴加湿搅拌机

二十三、KUD系列灰库顶部滤袋除尘器

二十四、螺杆式空气压缩机

二十五、冷冻式压缩空气干燥机

二十六、内旁通输送管

二十七、FS型发送罐

二十八、干式卸料装车机

二十九、中国大唐集团科技工程有限公司控制系统

第二节 石灰石制粉及粉煤灰分选系统及设备

三十、原料球磨机

三十一、稀油站

三十二、高效转子式选粉机

三十三、NE系列板链式提升机

三十四、螺旋输送机

三十五、电子汽车衡

三十六、振动喂料机

三十七、PCⅡ型高效二合一破碎机

三十八、空气炮

三十九、FU型链式输送机

四十、重锤矩形锁气翻板卸灰阀

四十一、ISW型系列卧式离心泵

四十二、称重皮带给料机

四十三、高压离心通风机

四十四、气流分选机

四十五、旋风分离器

第三节 密相气力输送设备

四十六、单管多泵密相气力输送系统及设备

四十七、MX型仓泵

四十八、JBT摆动式透气进料阀

四十九、GGF型系列管道隔离阀

五十、声波紊流器

五十一、输灰调节装置

五十二、DG型电动给料机

五十三、HC系列灰库顶部滤袋除尘器

五十四、SJ型双轴加湿搅拌机

五十五、双阀板金属陶瓷密封隔离阀

五十六、DS型电动锁气器

五十七、兰州电力修造厂控制系统

第四节 排渣设备

五十八、干式排渣机

五十九、门式挤渣机

附录 主要生产企业简介

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639