选择特殊符号
选择搜索类型
请输入搜索
根据被测信号频率分类
功率计可分为:直流功率计、工频功率计、变频功率计、射频功率计和微波功率计。由于直流功率等于电压和电流的简单乘积,实际测量中,一般采用电压表和电流表替代。工频功率计是应用较普遍的功率计,常说的功率计一般都是指工频功率计。变频功率计是21世纪变频调速技术高速发展的产物。其测量对象为变频电量,变频电量是指用于传输功率的,并且满足下述条件之一的交流电量:
1、信号频谱仅包含一种频率成分,而频率不局限于工频的交流电信号。
2、信号频谱包含两种或更多的被关注的频率成分的电信号。
变频电量包括电压、电流以及电压电流引出的有功功率、无功功率、视在功率、有功电能、无功电能等。
除了变频器输出的PWM波,二极管整流的变频器输入的电流波形,直流斩波器输出的电压波形,变压器空载的输入电流波形等,均含有较大的谐波,右图中为常见变频电量的波形及相关频谱图。
由于变频电量的频率成分复杂,变频功率计的测量一般包括基波有功功率(简称基波功率)、谐波有功功率(简称谐波功率)、总有功功率等,相比工频功率计而言,其功能较多,技术较复杂,一般称为变频功率分析仪或宽频功率分析仪,部分高精度功率分析仪也适用于变频电量测量。
变频功率分析仪可以作为工频功率分析仪使用,除此之外,一般还需满足下述要求:
1、满足必要的带宽要求,并且采样频率应高于仪器带宽的两倍。
2、要求分析仪在较宽的频率范围之内,精度均能满足一定的要求。
3、具备傅里叶变换功能,可以分离信号的基波和谐波。
射频或微波功率计按照在测试系统中的连接方式不同分类
有终端式和通过式两种。终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。通过式功率计利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。
射频或微波功率计按的测量原理分类
测热电阻型功率计使用热变电阻做功率传感元件。热变电阻值的温度系数较大。被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。
热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。
量热式功率计典型的热效应功率计,利用隔热负载吸收高频信号功率,使负载的温度升高,再利用热电偶元件测量负载的温度变化量,根据产生的热量计算高频功率值。
晶体检波式功率计晶体二极管检波器将高频信号变换为低频或直流电信号。适当选择工作点,使检波器输出信号的幅度正比于高频信号的功率。
射频或微波功率计按被测信号连续性分类
有连续波功率计和脉冲峰值功率计。
功率是表征电信号特性的一个重要参数。在直流和低频范围,可以通过测量电压和电流计算功率,功率的瞬时值可用下式表示:
对于周期信号,一个周期内的瞬时功率的平均值,称为有功功率。有功功率按下式计算:
对于正弦电路,下式成立:
上式中,U、I分别为正弦交流电的有效值,φ为电压与电流信号的相位差。
在超高频和微波频段,有TEM波和非TEM波之分。在TEM波的同轴系统中,电压和电流虽有确切含意,但测量其绝对值很困难。在波导系统中,因为存在不同的电磁模式,电压和电流失去唯一性。在个频段和各传输系统中,功率是单值表征信号强度的重要方法。在射频范围直接测量功率代替了电压和电流的测量。
功率定义为单位时间内所做的功。基本单位为瓦(W),1W等于在1秒内做1焦耳的功。常用的功率单位还有兆瓦(1MW=10^6W)、千瓦(1KW=10^3W)、毫瓦(1mW=10-3W)、微瓦(1μW=10-6W)、皮瓦(1Pw=10-12W)。
另一种常用的功率单位以分贝毫瓦(dBm)表示。它以1毫瓦为基准电平P0=1mW,实际功率值P(mW)与P0比较后取对数。这是功率的绝对单位。
也可用分贝瓦(dBW)作为功率单位,此时P0=1W,即1 dBW=3 dBm。
福光电子F346钳形数字功率表集数字电流表和功率测量仪于一体。仪表配有强大的测量和数据处理软件,完成电压、电流、有功功率、功率因素、视在功率、无功功率、电能、频率8个参数的测量、计算和显示,性能稳定,...
三相功率表用于三相线路,如工厂用电;单相功率表用于单项电路,如家庭用电。
功率因数指有功功率和视在功率的比值,一般用符号λ表示,即:λ=P/S.在正弦交流电路中,功率因数等于电压与电流之间的相位差(ψ)的余弦值,用符号COSψ表示。此时,COSψ=λ。功率因数表是指...
功率是表征电信号特性的一个重要参数。在直流和低频范围,可以通过测量电压和电流计算功率,功率的瞬时值可用下式表示:
对于周期信号,一个周期内的瞬时功率的平均值,称为有功功率。有功功率按下式计算:
对于正弦电路,下式成立:
上式中,U、I分别为正弦交流电的有效值,φ为电压与电流信号的相位差。
在超高频和微波频段,有TEM波和非TEM波之分。在TEM波的同轴系统中,电压和电流虽有确切含意,但测量其绝对值很困难。在波导系统中,因为存在不同的电磁模式,电压和电流失去唯一性。在个频段和各传输系统中,功率是单值表征信号强度的重要方法。在射频范围直接测量功率代替了电压和电流的测量。
以下是变频功率分析仪的典型技术指标
如图《变频功率分析仪》所示
带宽:50kHz~100kHz;
采样频率:大于带宽的2倍;
电压、电流准确级:0.02级、0.05级、0.1级、0.2级、0.5级;
功率准确级:0.05级、0.1级、0.2级、0.5级、1级;
准确级适用基波频率范围:DC,0.1Hz~400Hz;
准确级适用电压范围:0.75%Un~150%Un;
准确级适用电流范围:1%In~200%In;
准确级适用功率因数范围:0.05~1。
以下是射频功率计的典型技术指标
功率范围
保证测量精度的可测功率值的范围。功率计的功率范围决定于功率探头。
最大允许功率
探头不被损坏的最大输入功率值,通常指平均功率。在测量大功率峰值信号时,注意峰值电压和峰值功率不能超过一定值,否则会造成功率探头烧毁。
频率范围
能保证测量精度和性能指标的被测信号的频率范围。
测量精度
指功率探头校准修正后的精度。不包括测试系统的失配误差。
稳定性
功率计的稳定性取决于功率探头的稳定性和指示器的零漂及噪声干扰。
响应时间
也称功率传感元件的时间常数。通常指功率指示器上升到稳定值的64%所需的时间。
探头的型号、阻抗
选用功率计探头时,功率探头的使用频率、功率范围必须与被测信号一致,探头传输线的结构和阻抗应与被测传输线相互匹配。
光功率测量
用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
电气产品检试验
变频功率分析仪适用于电力推进、电机、风机、水泵、风力发电、轨道交通、电动汽车、变频器、特种变压器、荧光灯、LED照明等领域的产品检试验、能效评测及电能质量分析。
根据被测信号频率分类
功率计可分为:直流功率计、工频功率计、变频功率计、射频功率计和微波功率计。由于直流功率等于电压和电流的简单乘积,实际测量中,一般采用电压表和电流表替代。工频功率计是应用较普遍的功率计,常说的功率计一般都是指工频功率计。变频功率计是21世纪变频调速技术高速发展的产物。其测量对象为变频电量,变频电量是指用于传输功率的,并且满足下述条件之一的交流电量:
1、信号频谱仅包含一种频率成分,而频率不局限于工频的交流电信号。
2、信号频谱包含两种或更多的被关注的频率成分的电信号。
变频电量包括电压、电流以及电压电流引出的有功功率、无功功率、视在功率、有功电能、无功电能等。
除了变频器输出的PWM波,二极管整流的变频器输入的电流波形,直流斩波器输出的电压波形,变压器空载的输入电流波形等,均含有较大的谐波,如图1中为常见变频电量的波形及相关频谱图。
由于变频电量的频率成分复杂,变频功率计的测量一般包括基波有功功率(简称基波功率)、谐波有功功率(简称谐波功率)、总有功功率等,相比工频功率计而言,其功能较多,技术较复杂,一般称为变频功率分析仪或宽频功率分析仪,部分高精度功率分析仪也适用于变频电量测量。
变频功率分析仪可以作为工频功率分析仪使用,除此之外,一般还需满足下述要求:
1、满足必要的带宽要求,并且采样频率应高于仪器带宽的两倍。
2、要求分析仪在较宽的频率范围之内,精度均能满足一定的要求。
3、具备傅里叶变换功能,可以分离信号的基波和谐波。
射频或微波功率计按照在测试系统中的连接方式不同分类
有终端式和通过式两种。终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。通过式功率计利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。
射频或微波功率计按的测量原理分类
测热电阻型功率计使用热变电阻做功率传感元件。热变电阻值的温度系数较大。被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。
热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。
量热式功率计典型的热效应功率计,利用隔热负载吸收高频信号功率,使负载的温度升高,再利用热电偶元件测量负载的温度变化量,根据产生的热量计算高频功率值。
晶体检波式功率计晶体二极管检波器将高频信号变换为低频或直流电信号。适当选择工作点,使检波器输出信号的幅度正比于高频信号的功率。
射频或微波功率计按被测信号连续性分类
有连续波功率计和脉冲峰值功率计。
选择功率表的量程就是选择功率表中的电流量程和电压量程。使用时应使功率表中的电流量程不小于负载电流,电压量程不低于负载电压,而不能仅从功率量程来考虑。例如,两只功率表,量程分别是IA、300V和2A、150V,由计算可知其功率量程均为300W,如果要测量一负载电压为220V、电流为IA的负载功率时应逸用IA、300V的功率表,而2A、150V的功率表虽功率量程也大于负载功率,但是由于负载电压高于功率表所能承受的电压150V,故不能使用。所以,在测量功率前要根据负载的额定电压和额定电流来选择功率表的量程。
电动系测量机构的转动力矩方向和两线圈中的电流方向有关,为了防止电动系功率表的指针反偏,接线时功率表电流线圈标有“·”号的端钮必须接到电源的正极端,而电流线圈的另一端则与负载相连,电流线圈以串联形式接入电路中。功率表电压线圈标有“·”号的端钮可以接到电源端钮的任一端上,而另一电压端钮则跨接到负载的另一端,。
当负载电阻远远大于电流线圈的电阻时,应采用电压线圈前接法。这时电压线圈的电压是负载电压和电流线圈电压之和,功率表测量的是负载功率和电流线圈功率之和。如果负载电阻远远大于电流线圈的电阻,则可以略去电流线圈分压所造成的影响,测量结果比较接近负载的实际功率值。
当负载电阻远远小于电压线圈电阻时,应采用电压线圈后接法 。这时电压线圈两端的电压虽然等于负载电压,但电流线圈中的电流却等于负载电流与功率表电压线圈中的电流之和,测量时功率读数为负载功率与电压线圈功率之和。由于此时负载电阻远小于电压线圈电阻,所以电压线圈分流作用大大减小,其对测量结果的影响也可以大为减小。
如界被测负载本身功率较大,可以不考虑功率表本身的功率对测量结果的影响,则两种接法可以任意选择。但最好选用电压线圈前接法,因为功率表中电流线圈的功率一般都小于电压线圈支路的功率。
一般安装式功率表为直读单量程式,表上的示数即为功率数。但便携式功率表一般为多量程式,在表的标度尺上不直接标注示数,只标注分格。在选用不同的电流与电压量程时,每一分格都可以表示不同的功率数。在读数时,应先根据所选的电压量程U、电流量程I以及标度尺满量程时的格数&,求出每格瓦数(又称功率表常数)C,然后再乘上指针偏转的格数夕,就可得到所测功率P
例题
例:有一只电压量程为250V,电流量程为3A,标度尺分格数为75的功率表,现用它来测量负载的功率。当指针偏转50格时负载功率为多少?
解:先计算功率表常数C
C=UI/a,=250V×3A/75格=10W/格
故被测功率为
P=C色=10W/格×50格=500W
用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
变频功率分析仪适用于电力推进、电机、风机、水泵、风力发电、轨道交通、电动汽车、变频器、特种变压器、荧光灯、LED照明等领域的产品检试验、能效评测及电能质量分析。
对大多数从事电气方面工作的人员来说,功率表的使用并非难事。但真正做到正确使用功率表,即在准确度一定的情况下确保测量的精度及仪表的使用寿命又并非易事。以单相电动系功率表为例,就功率表的使用及使用中应注意的问题作一介绍。
1 要遵守“发电机端守则”
由电动系功率表的原理可知,功率表的转矩与流过表内线圈的电流方向有关,一旦其中一个线圈的电流方向改变,转矩方向也会改变。为此,在功率表两个线圈对应于电流流进的端钮上,都注有称为发电机端的“*”标志。功率表在接线时,应使电流或电压线圈带“*”标志的端钮接到电源同极性的端子上,以保证两线圈的电流方向都从发电机端流入。这就是功率表接线的“发电机端守则”。
2 合理选择电压线圈的前、后接方式
尽管电压线圈不论前接还是后接,功率表都能正偏,对于某些负载来说,测量的结果相差较小,这时两种接法采用哪种均可。但对于那些电阻(或阻抗)过大或过小的负载来说,两种接法所得结果相差较大,有时甚至出现与理论相矛盾的结果。
电压线圈前接方式
这种方式的接线,功率表电流线圈的电流虽然等于负载电流,但功率表电压支路两端电压却等于负载电压与功率表电流线圈的电压之和,在功率表读数中多了电流线圈的功率消耗。这种接线方式适用于负载电阻(或阻抗)远比功率表电流线圈电阻(或阻抗)大得多的情况,这样才能保证功率表本身的功率消耗对测量结果的影响比较小。
电压线圈后接方式
这种方式的接线,功率表电压支路两端的电压虽然等于负载电压,但电流线圈的电流却等于负载电流与功率表电压线圈支路电流之和,功率表读数中多了电压支路的功率消耗。因此,这种接线适用于负载电阻(或阻抗)远比功率表电压支路电阻(或阻抗)小得多的情况,这样才能保证功率表本身的功率消耗对测量结果的影响比较小 。
设备功率表
序号 设 备 名 称 规 格 型 号 数量 单位 单台功率 kw 总功率 kw 1 模块式风冷冷 (热)水机组 LSQWRF130M/D L=22.3m 3/h Q=130/140kW N=38.7/40kW 6 台 40 240 2 冷冻水泵 (2用1备) 150-160/2/22 N=22kW L=160m3/h H=32M 2 台 22 44 3 吊柜式空调机组 G-12WDI/E L =12000M 3/h H=300Pa N=3kW 8 台 3 24 4 卧式暗装风机盘管 FP-204WAH Q=11/17kWN=195W H=30Pa 6 台 0.195 1.17 5 卧式暗装风机盘管 FP-170WAH Q=9.2/14kWN=174W H=30Pa 4 台 0.174 0.696 6 卧式暗装风机盘管 F
照明照度对应功率表
照明 荧光灯单位面积安装功率( W/m 2) 计 算 高 度 (m) 房间面积 (m2) 荧光灯照度( lx)不带反射罩 /带反射罩 30 50 75 100 150 200 2-3 10-15 15-25 25-50 50-150 150-300 300 以上 3.9/3.2 3.4/2.7 3.0/2.4 2.6/2.1 2.3/1.9 2.0/1.8 6.5/5.2 5.6/4.9 4.9/3.9 4.2/3.4 3.7/3.2 3.4/3.0 9.8/7.8 8.1/6.7 7.3/5.8 6.3/5.1 5.6/4.7 5.1/4.5 13/10.4 11.1/8.9 9.7/7.7 8.4/6.8 7.4/6.3 6.7/5.9 19.5/15.6 16.7/13.4 14.6/11.6 12.6/10.2
电流:1A、5A 持续1.2倍,瞬时10倍/秒
电压:100V、220V、380V
持续1.2倍,瞬时2倍/秒
功耗<0.5VA
有功功率:0.5级
无功功率:1.0级
≥100MΩ
电源/输入/输出之间2kV/1min
≥50000h
2路集电极开路的光耦脉冲
工作范围 AC80~270V或DC100-350V,45Hz~65Hz;
功耗<1.2VA
模拟量输出
4-20mA、0-20mA、0-5V等
1路无源常开触点:1A/30VDC、2A/250VAC,高、低、不平衡报警均可设置
无源干接点输入方式:内置电源,光耦隔离
继电器常开触点输出:1A/30VDC、2A/250VAC
RS485接口 MODBUS-RTU协议
带背光的液晶显示(附加L代号),数码管显示(无附加代号)
仪表外形及安装尺寸
单位mm
l PZ568P3-3K1方形 — 面框尺寸为仪表面框尺寸为80mm*80mm,开孔尺寸为76mm*76mm,安装深度为91mm
l PZ568P3-9K1方形 — 面框尺寸为仪表面框尺寸为96mm*96mm,开孔尺寸为88mm*88mm,安装深度为85mm
l PZ568P3-2K1方形 — 面框尺寸为仪表面框尺寸为120mm*120mm,开孔尺寸为108mm*108mm,安装深度为85mm
安装方式:
嵌入式安装2100433B
如果正确使用,功率表可以在日常训练以及比赛进行时给我们增添优势。功率表正变得越来越实惠和普及,但是知道如何使用却是另一码事。
Jon Sharples是一名自行车专业教练。他解释道:“功率表的主要作用是向你实时反馈信息,以便你对自己的骑行强度和乘骑能力有个大致了解。但这不是让你在骑行结束后只关注功率表读数,只看数据不会让你从骑行锻炼中充分获益,同时也不会让你在比赛中实现高效踏频。”
功率表的参考价值优于心率,这又体现在哪呢?Sharples补充说:“因为水合作用、能级、整体肌肉疲劳度以及体温都能对你的心率产生很大影响,此时你不清楚自己应该铆足干劲继续骑行,还是应该停下来休息以节省体力。与心率检测仪不同,功率表反馈的是实时数据,它可以让骑手知道自己在一段里程固定的距离中如何掌握踏频,这无疑是克服长距离赛段最为有效的方法。”
功率表具体显示的是什么数据呢?功率表使用瓦特这一单位来测量你的功率。其最大的作用就是可以让骑手在正确的能量区域内训练,为目标赛事做准备。如果你目标锁定在25英里的计时赛,那么你需要搭建的能量体系就是在1小时里骑行速度最快的那种。
必备要素:
完美踏频
不可出现心率漂移
精准训练
跟踪你的健康状况
知道何时该休息
功率表还可以让一些训练项目变得更容易监测。心率检测仪很难捕捉到时间短且强度高的间歇训练。等到心率跟上肌肉运动的强度了,你的力气往往也快耗完。
使用功率表获知自己的能量输出和心率比,可以有效检验自己的训练是否有效。Sharples 认为,这些数据可以让你掌握自己的有氧运动状况。如果在能量输出等同下,你的心率开始下降,这说明你的骑行正变得更加有效。
功率表搭配心率监测仪同时使用,可以提示你生病的迹象,并且可以防止训练过度。如果在同样瓦特下,你的心率读数偏高或过低,很有可能是出了什么状况。
重点
功率表让你与对手比起来更具优势。如果你知道自己的临界功率,同时也知道在规定时间内你能完成的里程,那么无论是业余赛或者计时赛,你都可以在最短时间内完成比赛。
首先,你需要知道自己的“泛函临界功率(Functional Threshold Power,简称为FTP)”,FTP就是你在20分钟内的最大功率再乘以0.95。这一数据可以帮你估算出自己的训练区域。当你一旦超过FTP,踩踏功率就会很快衰弱;如果你在FTP以下范围内踩踏,则骑行可以维持较长的时间。
你需要清楚自己是否在比赛中发挥了最佳状态。追踪功率数据可以让你将日常训练与比赛相比较。如果你的赛前训练效率不高,那你需要更换策略了。
把自己与前几年中的表现精确比较。在比赛中,你的完赛时间会随路面和天气状况的不同而改变,心率也同样受到诸多因素的影响。但是,功率不会受到外来因素干扰,因此你可以知道自己是否取得进步。
知道如何高效踏频。从耐力区域内开始骑行会让你感到比较轻松。坚持骑行4小时的确很难,但是你会尽最大努力的。
告别“垃圾里程”—那些无效训练只会让身体疲倦,却不会让你变得更健康。如果你奋力骑行,仪表读数反而下降,那么是时候考虑给自己身体放假一天了。
经常校对你的功率表,仪表的操作指南会告诉你怎么做。经常校对才能确保仪表读数准确,你的训练才会有效。
【学员问题】什么叫三相功率表?
【解答】反映三相功率的大小,直接指示出三相功率数值的功率表。它是由两只单相功率测量机构组成,两个独立元件装在同一支架上,两个单元的可动部分固定连接在同一轴上,并可绕轴自由转动,总转矩等于两个单元转矩的代数和。因此,当仪表接入三相三线制电路中时,作用于转轴上的总转矩(平均值)便反映三相功率的大小。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。