选择特殊符号
选择搜索类型
请输入搜索
不同的固体有不同的导电特性,通常用电导率来量度它们的导电能力。电导率的定义是对固体施加的电场强度与固体内电流密度的比值。实验研究指出:在不太强的电场下固体的电导通常服从欧姆定律,即电流密度与电场强度成正比,是与电场强度无关的。对于立方晶体或非晶态材料来说,电导率是各向同性的,是一个标量。在一般情况下,电导率可能是各向异性的,应该用一个二阶张量表示。电导率的单位是欧·厘米。在许多情况下,电导率的倒数是一个使用起来更方便的量,称之为电阻率,用表示。
根据电导率的数值及其与温度的依赖关系,大致把固体分为三类:金属、半导体和绝缘体,下面依次作简要的说明。
金属 金属具有良好的导电性,其电导率在10欧·厘米以上。金属中的电流密度可写成电子电荷、电子的平均漂移速度尌和电子浓度的乘积,即。可定义电子平均速度与电场强度的比值为电子迁移率。这样一来,电导率可表为=。在欧姆定律成立的条件下,迁移率与电场强度无关,决定于材料的性质。最早提出的金属导电理论是P.K.L.德鲁德的经典理论。假定金属中价电子在电场中以同样方式运动,通过碰撞与组成点阵的离子实交换能量;在两次碰撞之间,电子被电场加速。电子在碰撞与加速这两种作用之下,具有一定的平均速度,即一定的迁移率,从而能解释欧姆定律。类似的考虑应用到热导理论,可以解释维德曼-夫兰兹定律,但德鲁德的理论不能解释金属电导率与温度的依赖关系,也不能解释电子具有几百个原子间距的长自由程的实验事实。这些矛盾直到人们用量子理论系统地研究了电子在晶体中运动的能带理论才得到了解决(见固体的能带)。能带论指出,导体、半导体、绝缘体导电性是由于它们的能带结构不同造成的。金属导体具有未被电子填满的能带,这种带中的电子能起导电作用,称为导带。能带理论还指出,在严格的周期性势场中,电子可保持处于某个本征态,且不随时间改变,也就是说,在严格的周期性势场中电子具有无限长的自由程,不会受到散射。因此,金属中的电阻并不是由于电子与周期排列的原子的碰撞,而是由于原子在平衡位置附近的热振动(点阵振动)。使严格的周期性势场遭到破坏,引起散射的结果。考虑了电子与点阵振动的相互作用,即电子-声子相互作用之后,理论才很好地解释了电导率与温度的关系,以及电子具有几百个原子间距的长自由程的实验事实。经验表明,金属的电阻率与温度的关系大致上可用一个普适函数
来表示, 式中是一个特征函数,接近于德拜温度(见德拜模型),是绝对温度。函数在高温时趋于1,低温下正比于(/)。即在高温时,电阻率正比于,低温下正比于。
不仅电子与点阵振动相互作用是固体电阻的起因,点阵的不完整性,如缺陷、杂质的存在也破坏了严格的周期性势场,也是电阻的起因。这种原因引起的电阻一般与温度无关,在低温下这部分电阻保持不变,不会消失,称为剩余电阻。如图所示,为钠在低温时由于点阵缺陷散射机制引起的剩余电阻。有些金属和合金,在极低温度下电阻率会突然降到零,在此转变温度下的物质叫做超导体(见超导电性)。
固体的导电性 半导体 半导体的电导介于金属和绝缘体之间。对于本征半导体,在绝对零度时,它只有完全被电子填满的价带和全空的导带,二者之间存在着一个带隙,或称禁带(见固体的能带)。当温度升高时,有少量电子从价带激发到导带,产生能导电的电子和空穴,载流子浓度与温度有关,其电导率随温度的变化可近似表示为e,是常数,是绝对温度。对于掺杂半导体的电导,以及半导体的导电中其他问题,见半导体物理学。
绝缘体 通常把电导率小于10欧·厘米的材料称作绝缘体。从能带理论的观点来看,绝缘体与半导体的区别仅在于绝缘体的禁带宽度比半导体大,因此绝缘体中载流子浓度非常小,决定了绝缘体的电导率很小。
离子晶体和非导态固体 对某些离子晶体,还存在另一种导电机制──离子导电。它是靠外电场作用下正负离子的移动引起电流的。通常,离子电导率很小。
上述的固体电导都是指晶态固体,对于非晶态固体的电导还有自己的特点,见非晶态材料、非晶态半导体、非晶态电介质。
概念释义
不同的固体有不同的导电特性,通常用电导率来量度它们的导电能力。电导率的定义是对固体施加的电场强度与固体内电流密度的比值。实验研究指出:在不太强的电场下固体的电导通常服从欧姆定律,即电流密度与电场强度成正比,是与电场强度无关的。对于立方晶体或非晶态材料来说,电导率是各向同性的,是一个标量。在一般情况下,电导率可能是各向异性的,应该用一个二阶张量表示。电导率的单位是欧·厘米。在许多情况下,电导率的倒数是一个使用起来更方便的量,称之为电阻率,用表示。
根据电导率的数值及其与温度的依赖关系,大致把固体分为三类:金属、半导体和绝缘体,下面依次作简要的说明。
金属 金属具有良好的导电性,其电导率在10欧·厘米以上。金属中的电流密度可写成电子电荷、电子的平均漂移速度尌和电子浓度的乘积,即。可定义电子平均速度与电场强度的比值为电子迁移率。这样一来,电导率可表为=。在欧姆定律成立的条件下,迁移率与电场强度无关,决定于材料的性质。最早提出的金属导电理论是P.K.L.德鲁德的经典理论。假定金属中价电子在电场中以同样方式运动,通过碰撞与组成点阵的离子实交换能量;在两次碰撞之间,电子被电场加速。电子在碰撞与加速这两种作用之下,具有一定的平均速度,即一定的迁移率,从而能解释欧姆定律。类似的考虑应用到热导理论,可以解释维德曼-夫兰兹定律,但德鲁德的理论不能解释金属电导率与温度的依赖关系,也不能解释电子具有几百个原子间距的长自由程的实验事实。这些矛盾直到人们用量子理论系统地研究了电子在晶体中运动的能带理论才得到了解决(见固体的能带)。能带论指出,导体、半导体、绝缘体导电性是由于它们的能带结构不同造成的。金属导体具有未被电子填满的能带,这种带中的电子能起导电作用,称为导带。能带理论还指出,在严格的周期性势场中,电子可保持处于某个本征态,且不随时间改变,也就是说,在严格的周期性势场中电子具有无限长的自由程,不会受到散射。因此,金属中的电阻并不是由于电子与周期排列的原子的碰撞,而是由于原子在平衡位置附近的热振动(点阵振动)。使严格的周期性势场遭到破坏,引起散射的结果。考虑了电子与点阵振动的相互作用,即电子-声子相互作用之后,理论才很好地解释了电导率与温度的关系,以及电子具有几百个原子间距的长自由程的实验事实。经验表明,金属的电阻率与温度的关系大致上可用一个普适函数
来表示, 式中是一个特征函数,接近于德拜温度(见德拜模型),是绝对温度。函数在高温时趋于1,低温下正比于(/)。即在高温时,电阻率正比于,低温下正比于。
不仅电子与点阵振动相互作用是固体电阻的起因,点阵的不完整性,如缺陷、杂质的存在也破坏了严格的周期性势场,也是电阻的起因。这种原因引起的电阻一般与温度无关,在低温下这部分电阻保持不变,不会消失,称为剩余电阻。如图1所示,为钠在低温时由于点阵缺陷散射机制引起的剩余电阻。有些金属和合金,在极低温度下电阻率会突然降到零,在此转变温度下的物质叫做超导体(见超导电性)。
固体的导电性半导体 半导体的电导介于金属和绝缘体之间。对于本征半导体,在绝对零度时,它只有完全被电子填满的价带和全空的导带,二者之间存在着一个带隙,或称禁带(见固体的能带)。当温度升高时,有少量电子从价带激发到导带,产生能导电的电子和空穴,载流子浓度与温度有关,其电导率随温度的变化可近似表示为e,是常数,是绝对温度。对于掺杂半导体的电导,以及半导体的导电中其他问题,见半导体物理学。
绝缘体 通常把电导率小于10欧·厘米的材料称作绝缘体。从能带理论的观点来看,绝缘体与半导体的区别仅在于绝缘体的禁带宽度比半导体大,因此绝缘体中载流子浓度非常小,决定了绝缘体的电导率很小。
离子晶体和非导态固体 对某些离子晶体,还存在另一种导电机制──离子导电。它是靠外电场作用下正负离子的移动引起电流的。通常,离子电导率很小。
上述的固体电导都是指晶态固体,对于非晶态固体的电导还有自己的特点,见非晶态材料、非晶态半导体、非晶态电介质。
理论上来说是铜,具体的要看材料的电阻率 电阻率越低,导电性越好 以下是部分物体的电阻率。 银1.6×10-8 铂1.0×10-7 镍铬合金1.0×10-6 铜1.7×10-8 铁1.0×10-7 铁铬...
R=p*(l/s),R代表阻值,p代表电阻率,l代表导体长度,s代表横截面积。P=U^2/R,电压一定时电阻越大,功率就越小…P=I^2*R,电流一定,电阻越大损失的电功率越大 ,所以...
从科学角度讲,自然条件下没有绝对的绝缘性的,就算是空气也能够被穿。也就是说,任何物质都有导电性,只是有强有弱而已。液态制冷剂的导跟油差不多。
导电塑料用于高导电性领域
Chem Eng,2015-06-01Electri Plast公司开发出导电塑料粒,可应用于不同类型的树脂,并且可以包含多种不同类型的金属涂覆的碳纤维。由这种粒料模塑的塑料部件可以用来代替屏蔽计算机和电气元件防止电磁干扰的铸铝,其中该塑料可以减轻质量高达60%。Electri Plast公司正在推出的产品可用于许多领域,包括
示踪线导电性检查
关于 PE 管示踪线若干问题的讨论 一、 引子 我公司南海市燃气总公司使用 PE管已有二、 三年的时间了, 但是一直 有个似心病一样的技术问题未被解决 ----即怎样地面状况发生大的变化时 查找到故障地下管道。 在最初使用 PE管时,我们照搬了别处的做法: (塑料警示带 +示踪带) 伴 PE管回填,塑料警示带的主要作用是为防止其他动土作业损坏 PE管, 在查找确切管位时并不能起直接的作用; 示踪带的结构组成是两层 PE塑料 膜中间夹着窄条的铝簿,其作用尚未可知。 后来,在地下钢管系统防腐状况检测的过程中,我们逐渐找到了解决 的办法。 二、地下钢管系统防腐状况检测原理 原理:大地中无限长的导体,加电源通电时,电流在导体中任意一点上的 电流强度,在不考虑大地电阻、导体不存在不均匀放电等因素时,电流的 变化(即衰减),只受供电的频率、导体的表层(防腐层)电阻、纵向电 阻率(导体的电阻率)影响。其
综述:
不同的固体有不同的导电特性,通常用电导率σ来量度它们的导电能力。电导率的定义是对固体施加的电场强度E与固体内电流密度J的比值。实验研究指出:在不太强的电场下固体的电导通常服从欧姆定律,即电流密度与电场强度成正比,σ是与电场强度无关的。对于立方晶体或非晶态材料来说,电导率σ是各向同性的,是一个标量。在一般情况下,电导率可能是各向异性的,应该用一个二阶张量表示。电导率的单位是S/m。在许多情况下,电导率的倒数是一个使用起来更方便的量,称之为电阻率,用ρ表示,单位是Ω·m。
根据电导率的数值及其与温度的依赖关系,大致把固体分为三类:金属、半导体和绝缘体,下面依次作简要的说明。
金属具有良好的导电性,其电导率在10 Ω·cm以上。金属中的电流密度J可写成电子电荷e、电子的平均漂移速度尌和电子浓度n的乘积,即可定义电子平均速度与电场强度E的比值为电子迁移率。这样一来,电导率σ可表为σ=neμ。在欧姆定律成立的条件下,迁移率μ与电场强度无关,决定于材料的性质。最早提出的金属导电理论是P.K.L.德鲁德的经典理论。假定金属中价电子在电场中以同样方式运动,通过碰撞与组成点阵的离子实交换能量;在两次碰撞之间,电子被电场加速。电子在碰撞与加速这两种作用之下,具有一定的平均速度,即一定的迁移率,从而能解释欧姆定律。类似的考虑应用到热导理论,可以解释维德曼-夫兰兹定律,但德鲁德的理论不能解释金属电导率与温度的依赖关系,也不能解释电子具有几百个原子间距的长自由程的实验事实。这些矛盾直到人们用量子理论系统地研究了电子在晶体中运动的能带理论才得到了解决(见固体的能带)。能带论指出,导体、半导体、绝缘体导电性是由于它们的能带结构不同造成的。金属导体具有未被电子填满的能带,这种带中的电子能起导电作用,称为导带。能带理论还指出,在严格的周期性势场中,电子可保持处于某个本征态,且不随时间改变,也就是说,在严格的周期性势场中电子具有无限长的自由程,不会受到散射。因此,金属中的电阻并不是由于电子与周期排列的原子的碰撞,而是由于原子在平衡位置附近的热振动(点阵振动)。使严格的周期性势场遭到破坏,引起散射的结果。考虑了电子与点阵振动的相互作用,即电子-声子相互作用之后,理论才很好地解释了电导率与温度的关系,以及电子具有几百个原子间距的长自由程的实验事实。经验表明,金属的电阻率与温度的关系大致上可用一个普适函数来表示, 式中ΘR是一个特征函数,接近于德拜温度(见德拜模型),T是绝对温度。函数f在高温时趋于1,低温下正比于(T/ΘR)。即在高温时,电阻率正比于T,低温下正比于T。
不仅电子与点阵振动相互作用是固体电阻的起因,点阵的不完整性,如缺陷、杂质的存在也破坏了严格的周期性势场,也是电阻的起因。这种原因引起的电阻一般与温度无关,在低温下这部分电阻保持不变,不会消失,称为剩余电阻。如图所示,为钠在低温时由于点阵缺陷散射机制引起的剩余电阻。有些金属和合金,在极低温度下电阻率会突然降到零,在此转变温度下的物质叫做超导体(见超导电性)。
半导体的电导介于金属和绝缘体之间。对于本征半导体,在绝对零度时,它只有完全被电子填满的价带和全空的导带,二者之间存在着一个带隙,或称禁带(见固体的能带)。当温度升高时,有少量电子从价带激发到导带,产生能导电的电子和空穴,载流子浓度与温度有关,其电导率随温度的变化可近似表示为σ∝e,A是常数,T是绝对温度。对于掺杂半导体的电导,以及半导体的导电中其他问题,见半导体物理学。
从能带理论的观点来看,绝缘体与半导体的区别仅在于绝缘体的禁带宽度比半导体大,因此绝缘体中载流子浓度非常小,决定了绝缘体的电导率很小。
对某些离子晶体,还存在另一种导电机制──离子导电。它是靠外电场作用下正负离子的移动引起电流的。通常,离子电导率很小。
上述的固体电导都是指晶态固体,对于非晶态固体的电导还有自己的特点,详见非晶态材料、非晶态半导体、非晶态电介质。
固体废物处理的基本思想是:采取资源化、减量化和无害化的处理,对固体废物产生的全过程进行控制。固体废物的主要处理方法如下:
(1)回收利用
回收利用是对固体废物进行资源化的重要手段之一。粉煤灰在建设工程领域的广泛应用就是对固体废弃物进行资源化利用的典型范例。又如发达国家炼钢原料中有70%是利用回收的废钢铁,所以,钢材可以看成是可再生利用的建筑材料。
(2)减量化处理
减量化是对已经产生的固体废物进行分选、破碎、压实浓缩、脱水等减少其最终处置量,减低处理成本,减少对环境的污染。在减量化处理的过程中,也包括和其他处理技术相关的工艺方法,如焚烧、热解、堆肥等。
(3)焚烧
焚烧用于不适合再利用且不宜直接予以填埋处置的废物,除有符合规定的装置外,不得在施工现场熔化沥青和焚烧油毡、油漆,亦不得焚烧其他可产生有毒有害和恶臭气体的废弃物。垃圾焚烧处理应使用符合环境要求的处理装置,避免对大气的二次污染。
(4)稳定和固化
稳定和固化处理是利用水泥、沥青等胶结材料,将松散的废物胶结包裹起来,减少有害物质从废物中向外迁移、扩散,使得废物对环境的污染减少。
(5)填埋
填埋是固体废物经过无害化、减量化处理的废物残渣集中到填埋场进行处置。禁止将有毒有害废弃物现场填埋,填埋场应利用天然或人工屏障。尽量使需处置的废物与环境隔离,并注意废物的稳定性和长期安全性。
导电性复合纤维,在制造过程中不产生成分剥离,长期使用时仍保持初期的导电性能,而且染色牢固度优良。将含有15-50重量%导电性炭黑的导电性聚酰胺层(A)和由特定组成的聚酰胺形成的保护聚合物层(B)进行复合,使导电性聚酰胺层(A)露出纤维表面,其表面露出部分的数量,每1单丝有3处以上,每1个纤维断面周长方向上的露出距离L↓[1](μm)满足下式,而且,保护聚合物层(B)占纤维面周长的60%以上,纤维总重量的50-97重量%。0.1≤L↓[1]≤L↓[2]/10(1)L↓[2]∶1根单丝纤维的断面周长(μm)。
其特征是由导电性聚合物层(A)和保护聚合物层(B)形成的导电性复合纤维,而导电性聚合物层(A)是由含15~50重量%导电性炭黑的热塑性聚酰胺形成,保护聚合物层(B)是由熔点在170℃以上的热塑性聚酰胺形成,由任意纤维断面看时,导电性聚合物层(A)在纤维表面上露出3处以上,每一个露出处的露出距离L↓[1](μm)满足下式(1),且保护聚合物层述。