选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

光弹效应

光弹效应也叫应力双折射效应。将有机玻璃加力,发现有机玻璃变成各向异性。加力的方向即光轴的方向。

光弹效应基本信息

光弹效应造价信息

  • 市场价
  • 信息价
  • 询价

交换箱

  • 光缆交换连接箱
  • 光交换箱
  • 13%
  • 江苏海通交通集团有限公司南宁分公司
  • 2022-12-06
查看价格

侧发格栅教室灯

  • 1200×300×30mm
  • LOHUA
  • 13%
  • 深圳市罗化光源有限公司
  • 2022-12-06
查看价格

双射灯

  • 18W,3000K,DC24V,IP65;色容差小于5;具备远程同步工作监测;一年后光通维持率不低于95%; 两年后光通维持率不低于90%;具备电压波变自适应功能。
  • 江苏明朗
  • 13%
  • 江苏明朗照明科技有限公司
  • 2022-12-06
查看价格

双射灯

  • DC24V,18W,3000K,角度定制,IP65;色容差小于5;具备远程同步工作监测;具备电压波变自适应功能;一年后光通维持率不低于95%; 两年后光通维持率不低于90%.
  • 光联照明
  • 13%
  • 上海光联照明有限公司
  • 2022-12-06
查看价格

双射灯

  • 材料:铝合金灯体+钢化玻璃,CREE(12颗);光束角可定制;色温3000K(根据要求);防护等级IP65;电压DC24V,18W/套;色容差小于5;具备远程同步工作监测;一年后光通维持率不低于95%; 两年后光通维持率不低于90%;具备电压波变自适应功能.
  • 佛山银河照明
  • 13%
  • 佛山市银河兰晶科技股份有限公司
  • 2022-12-06
查看价格

X脱水烘干

  • ZTH-340
  • 台班
  • 汕头市2012年1季度信息价
  • 建筑工程
查看价格

X脱水烘干

  • ZTH-340
  • 台班
  • 汕头市2011年1季度信息价
  • 建筑工程
查看价格

X脱水烘干

  • ZTH-340
  • 台班
  • 汕头市2010年2季度信息价
  • 建筑工程
查看价格

X脱水烘干

  • ZTH-340
  • 台班
  • 汕头市2009年1季度信息价
  • 建筑工程
查看价格

X脱水烘干

  • ZTH-340
  • 台班
  • 汕头市2008年4季度信息价
  • 建筑工程
查看价格

  • 1、按2、详见:材料样板
  • 10个
  • 3
  • 多玛、亚萨合莱、茵科
  • 中高档
  • 含税费 | 含运费
  • 2021-10-20
查看价格

带座开器

  • TIP-ON带座开器
  • 150个
  • 3
  • BLUM(百隆)
  • 中档
  • 不含税费 | 不含运费
  • 2019-03-08
查看价格

智能柜1

  • 1000×500×1800mm,内做12个电子自动计数屉.
  • 2台
  • 3
  • 按附件提供的供应商,任意找三家询价
  • 中档
  • 不含税费 | 不含运费
  • 2022-12-02
查看价格

智能柜1

  • 1000×500×1800mm,内做12个电子自动计数
  • 1台
  • 3
  • 中档
  • 不含税费 | 不含运费
  • 2022-11-03
查看价格

塞曼效应实验仪

  • 波长546.1nm,透射带宽≤10nm,峰值透过率≥50%; 4、通过CCD摄录塞曼效应分裂线,并用电脑智能软件对分裂线进行测量和分析; 5、仪器不含电脑
  • 1台
  • 1
  • 中档
  • 不含税费 | 不含运费
  • 2020-07-08
查看价格

光弹效应常见问题

查看详情

光弹效应文献

光电效应3 光电效应3

光电效应3

格式:pdf

大小:247KB

页数: 9页

光电效应和普朗克常量的测定 一、实验目的 了解光电效应的基本规律;学会用光电效应法测普朗克常量;测定并画出光电 管的光电特性曲线。 二、实验仪器 水银灯、滤光片、遮光片、光电管、光电效应参数测试仪。 三、实验原理 光电效应: 当光照射在物体上时,光子的能量一部分以热的形式被物体吸收,另一部分则 转换为物体中一些电子的能量,使部分电子逃逸出物体表面。这种现象称为光电效 应。爱因斯坦曾凭借其对光电效应的研究获得诺贝尔奖。在光电效应现象中,光展 示其粒子性,同时也提出了光的量子性。 光电效应装置: S为真空光电管。内有电极板, A、K极板分别为阳极和阴极。 G为检流计(或 灵敏电流表)。无光照时,光电管内部断路, G中没有电流通过。 U为电压表,测 量光电管端电压。由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的 内阻基本忽略。故检流计采用“内接法”。 用一波长较短(光子能量较大)的单色

钢靶运动对弹丸侵彻效应影响的仿真研究 钢靶运动对弹丸侵彻效应影响的仿真研究

钢靶运动对弹丸侵彻效应影响的仿真研究

格式:pdf

大小:247KB

页数: 6页

为了研究靶板侧向运动对弹丸正侵彻效应的影响,运用ANSYS/LS-DYNA模拟在不同攻角条件下弹丸对不同运动速度靶板的正侵彻效应。计算结果表明:无攻角条件下,当靶板侧向运动时,弹丸的剩余速度小于侵彻静止靶板时的剩余速度,有攻角时则相反;靶板运动速度对弹丸侵彻姿态影响比较明显,且弹轴与初始位置的最大偏转角随弹靶X方向的速度之差的增加而增加。本研究揭示了侵彻运动靶过程中弹丸侵彻姿态、速度等的变化规律,可为打击运动目标的有关弹药设计提供参考。

全光纤传感器基本原理

系统结构

干涉型光纤传感器的原理是: 根据光弹效应, 当外界振动信号作用在光纤上时, 光纤长度和折射率等发生使传输光的光程发生变化, 从而导致光相位变化。通过构造光路使两路相干光干涉, 从干涉光强中就能得到光相位变化的信息,光相位变化即对应了外界振动信号的变化。干涉型光纤传感器主要应用的是迈克尔逊( Michelson) 干涉仪、 马赫—曾德尔( Mach-Zenhder) 干涉仪、 Sagnac 干涉仪以及各干涉仪之间混合组成的干涉系统 。

SLD 为超辐射二极管提供 1 310 nm 的激光,DC1 为环形器,从光输入端 1 输入的光从 2 输出, 从 2 中输入的光从 3 中输出。DC2 是均分 3 × 3 光纤耦合器, 输入端5 为光源输入端, 输入端 6 为干涉光探测端, 输入端 4 和输出端 7 之间用数公里的延时线圈相连, 在输出端 8 和法拉第旋转镜( 10 位置处) 之间为振动信号检测光纤, 这段光纤布设在电机需要监测振动状况的部位, 电机的振动作用于这段光纤上,对光纤中传输的激光进行相位调制。从输出端 6 输出的干涉信号由 PIN2 接收,在该处干涉的两路相干光所 走 的 路 径 分 别 为: Path1, 1—2—5—8—9—10—9—8—4—7—6;Path2, 1—2—5—7—4—8—9—10—9—8—6。从输出端 5 输出的干涉光从 2 处输入环形器, 并从 3 处输出, 被 PIN1 接收, 输出端 5处干涉的两路相干光所走的路径分别为: Path3,1—2—5—8—9—10—9—8—4—7—5; Path4, 1—2—5—7—4—8—9—10—9—8—5 。

假设在传感臂上施加的电机振动信号为余弦调制, 则PIN1 和 PIN2 接收到的干涉光强可以分别表示为

I1 ( t) = A B cos( s cos ωst 0 ) , ( 1) I2( t) = A B cos( scos ωst) , ( 2)

式中 A 与 B 为正比于输入的光强,ωs 和 s 分别为光纤感受到的电机振动信号的角频率及其产生的两路相干光相位差的幅值,0 为无外界振动时, 两束相干光到达 6 位置时的固定相位差,对于图 1 所示系统中使用的均分 3 × 3 耦合器,0 = 23 π。通过光强 I1 ( t) 和 I2 ( t) 可以解调出与电机振动信号呈正比的信号 φs( t) [ 8] ,用于进一步的频谱分析 。

电机状态监测原理

电机在正常运行的状态下, 产生的振动信号具有一定的稳定性,因此,在频域上也表现出一定的稳定性。当电机由于老化、 磨损、 有异物、 松动等原因使得其运行不稳定时,它所产生的振动与稳定状态下相比有明显的区别。对电机故障诊断使用的传统方法是用频谱仪对信号的频谱进行分析。在正常状态下,振动信号的频谱大致由基频 f0 及其各次谐波 1f0 ,2f0 ,3f0…构成。基频 f0 的大小与电机的运转速度 v 有关,当转速 v 增大时,f0 也相应增大, 同时 f0 的各次谐波的位置也会相应的变化。基频 f0 及其各次谐波的幅度值不同,一般而言基频对应的幅值最大。当由于电机的故障导致电机转速降低、 振动加强时,信号的频谱上对应的会出现基频和各次倍频的移动及其幅值的改变 。传统的频谱分析主要借助的方法是离散傅里叶变换, 离散傅里叶变换的公式如式( 3) 所示

S( ω) = ∑N-1n = 0X( n) e - jnω . ( 3)

其中,ω 为信号角频率,S( ω) 为信号的频谱,X( n) 为信号的离散采样值 。

为实现对电机运行状况是否良好的判断, 必须对电机正常运行时所辐射出的噪声进行频谱分析, 提取正常运行时的频谱特征, 如基频和各次倍频的位置和幅值。将每秒采集振动信号频谱中的特征与正常运行时的特征比较, 运行时的值与正常值之差大于阈值时, 则认为电机处于不正常状态 。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639