选择特殊符号
选择搜索类型
请输入搜索
章永辉,中国人民大学经济学院讲师,经济学博士,2013年毕业于新加坡管理大学经济学院,师从国际知名计量经济学家苏良军教授和Peter Phillips教授。主要研究领域为计量经济学理论和应用,具体方向包括非参数计量、面板数据模型和金融计量等。目前,已主持完成一项国家自然科学基金青年项目,正主持一项国家自然科学基金面上项目,并参与了多项国家级基金项目。在Journal of章永辉,中国人民大学经济学院讲师,经济学博士,2013年毕业于新加坡管理大学经济学院,师从国际知名计量经济学家苏良军教授和Peter Phillips教授。主要研究领域为计量经济学理论和应用,具体方向包括非参数计量、面板数据模型和金融计量等。目前,已主持完成一项国家自然科学基金青年项目,正主持一项国家自然科学基金面上项目,并参与了多项国家级基金项目。在Journal of 2100433B
本书主要研究了一系列面板数据模型的估计和检验问题。传统的面板数据假设个体之间是相互独立的,然而经济个体往往是普遍相关的。本书首先关注横截面相关面板数据模型的计量理论问题:为不平衡面板提出公共相关效应估计量;为具有交互固定效应的面板模型提供一个线性设定检验。其次,鉴于参数设定可能导致错误设定,本书还关注非参数面板模型:为个体间是否存在公共时间趋势提供一个非参数检验;系统性地研究了局部线性动态面板模型的估计和检验方法。
供你参考,全国各地都有不同的
95就是选单芯最大的那个截面
市场数据分析,需要学习以下几个方面的知识:(1)数据管理。a、数据获取。企业需求:数据库访问、外部数据文件读入案例分析:使用产品信息文件演示spss的数据读入共能。b、数据管理。企业需求:对大型数据进...
面板数据模型截面相关检验方法综述
面板数据中截面之间的相关性主要来自于外部共同冲击、只针对某些观测个体的局部冲击,以及观测个体之间的空间交互作用.近年来,如何针对截面相依进行界定、度量和建模引起来广泛的关注.本文主要针对在线性面板数据模型上提出的多种检验模型误差截面不相关的检验方法进行介绍和比较.
面板数据分析使用操作模板
面板数据分析使用操作模板
这本备受赞誉的研究生教材第二版提供了用在现代计量经济学研究的两类数据结构分析的一个统一处理:横截面数据和面板数据。本书同时涵盖了线性和非线性模型,包括含有动态性和/或个体异质性的模型。除了一般估计框架(特别是矩方法与极大似然法)外,还详细介绍了一些特定的线性与非线性方法,包括probit和logit模型、多项选择和有序选择模型、Tobit模型和两部拓展式、关于计数数据的模型、多种截取和缺失数据设计、因果(或处理)效应估计,以及期限分析,并扩展了控制函数和相关随机效应方法以允许估计存在内生性和异质性的复杂模型。
相比第一版,第二版已经被实质性地更新和修订。改进包括:更大的一类关于缺失数据问题的模型;整群抽样问题更详细的处理,这对经验研究而言是一个重要主题;关于"广义工具变量"(GIV)估计的展开讨论;对逆概率加权的新覆盖;一个用于估计含有关于干预和不同数据结构——包括面板数据,和一个在对非线性面板数据的计量经济学方法与在统计学及其他领域中流行的"广义估计方法"文献之间牢固确立的联系——方面假设的处理效应之更完整的框架。对解释特殊的计量经济学方法可以在何时应用给予了新的关注;目标不仅是告诉读者什么是起作用的,而且还说明某些"显然的"程序为何不可行。许多列入书中的习题,无论是理论性的还是基于计算机的,都允许读者拓展涵盖在书中的方法并发现新的洞见。
杰弗里.M.伍德里奇是密歇根州立大学的经济学"大学杰出教授"和计量经济学会院士。2100433B
数据分析和数据挖掘,是大数据应用的核心技术,也是大数据应用的关键所在。
数据分析重要,但是,很多时候却不知道该如何去做,面对大量的数据,却无从下手。概括起来,经常面临的困难有:
◆ 分析目的不明确
◆ 分析方法不清晰
◆ 分析过程不清晰
◆ 分析思路不完善
◆ 解读数据能力差
1、 不知道要分析什么?(分析目的)
不知道要分析什么,也就是分析目的不明确。
经常有学员告诉我,领导给了一大堆数据给我,要我分析一下,但我不知道要分析什么?除了基本的统计求和,我不知道要干吗。
明确分析目的,这是数据分析的起点,也是分析的终点。所有的分析工作都应该围绕业务问题开始,分析的结果最终也要落到业务问题。
如果目的不明确,后续的分析工作就无法开展了。
2、 下一步做什么?(分析过程)
数据分析不是一个单一的操作,而是一套复杂和完整的操作流程。
一般地,一个完整的数据分析包括了六个步骤,后一个步骤依赖前一个步骤,也是前一个过程的深入。
当有了分析目的之外,接下来就需要围绕业务问题来收集相关的数据,并对收集来的数据进行预处理(清洗、转化、提取、计算),如果使用FineBI之类的BI工具来处理的话就是先抽取数据、ETL处理数据,然后在前端多维度分析,并对分析结果进行可视化,最后形成一个完整的分析报告,到此,一个数据分析的工作才算正式完成。
3、 不知道怎样去分析?(分析方法)
分析目的明确了,数据也有了,但面对大量的、复杂的数据,却无从下手,不知道怎样分析,这是由于分析者缺乏对分析方法的了解。
数据分析最核心的工作,就是对数据进行分析。围绕业务问题,采用什么样的分析方法,使用什么样的分析模型,选择什么样的分析工具,这是数据分析的核心。这是分析师的必备技能。
为了便于理解,我将数据分析分为三个层次,从低到高,由浅入深,分别是统计分析,基本分析,数据挖掘。
一般情况下,企业有80%的工作都只需要掌握统计分析方法就可以了,剩下20%的工作需要更深入的分析及挖掘。当然,更深层次的业务规律及业务模式,需要更高层次的数据分析来解决。比如,市场细分,客户特征提取,等等。
4、 看不明白分析结果?(数据解读)
好不容易分析有结果了,统计有数据了,但是,这些数据及分析结果表示什么意思呢?与我们的业务有什么关系呢?这一步也不知道坑了多少学员。
对数据不敏感,解读数据的能力差,无法将分析结果与业务问题和业务策略关联起来,这是数据应用的最大障碍。
如何来解读数据,解读分析结果,这需要有一定的数据解读方法,也需要分析师要了解相应的业务逻辑。
5、 不知道分析是否全面?(分析思路)
我经常收到一些分析师的抱怨,他们说,基本的分析我都会了,但是,每次提交分析报告给领导以后,领导总是不太满意,说我分析不全面,漏此漏那的。分析不全面,这是由于缺乏分析思路导致的。
如果说,分析方法是从微观从细节来对数据进行分析,那么,分析思路,就是从宏观角度指导如何进行数据分析,比如从哪几个方面来进行完整的数据分析而不会遗漏。
要掌握分析思路,需要分析师懂业务、懂管理、懂营销。比如,如果要分析企业的外部环境,你必须要懂得PEST模型,即要从政策、经济、社会和技术四个方面来进行分析,否则就是不全面的;如果要做竞争分析,你需要懂得SWOT、波特五力,从这几个方面来分析竞争态势,才算完整和系统。
最简单,最实用的是5W2H模型,广泛用于企业营销活动、用户行为分析等专题分析中,即要求分析的从下面7个方面来进行分析,这样可以确保能够将用户购买行为分析完整、系统。
数据分析看起来很简单,但如果没有经过系统的培训,要胜任这项工作也是不容易的。毕竟,数据分析师作为企业主管的智囊,作为主管决策的支撑,其重要性及高要求是不言而喻。