选择特殊符号
选择搜索类型
请输入搜索
红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪的构成包5大部分:
1、红外镜头:接收和汇聚被测物体发射的红外辐射;
2、红外探测器组件:将热辐射型号变成电信号;
3、电子组件:对电信号进行处理;
4、显示组件:将电信号转变成可见光图像;
5、软件:处理采集到的温度数据,转换成温度读数和图像。
红外热像仪的应用范围极其广泛,并且随着红外技术的不断发展及普及,新的应用被不断开发,目前主要有一下几个应用大类。
材料研究:有机材料、无机材料、复合材料、3D打印材料、纳米材料、弹性材料等。
机械与动力:新能源动力系统、制动系统、液压系统、牵引系统、传动系统、加热系统、精密加工等。
电子与电气:微电子、芯片、电子元器件、强电设备等。
土木工程:桥梁、隧道、大坝、建筑物等基建设施的渗漏、空鼓、缝隙问题、地质勘探等。
化学与化工:化学反应过程监测、反应设备监测、产品性能测试等。
动物与植物:药性及药效试验、新品种培育、动物习性、生长环境、激光脱毛、微生物体、医学研究等。
其它科研:考古与文物保护、空间试验、空气动力学、激光及光纤研究、爆炸研究、碰撞试验、火山研究、温室效应、沙尘暴、采矿、地震等。
|
|
|
输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器等。
配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆、发电机、绕组装备、油枕、UPS等。
|
|
|
通用机电设备:传送带检测、电机检测、阀门检测、法兰泄露检测、管道检测、冷凝阀、压缩机、轴承检测等。
冶金加热设备:钢包、高炉风口、高炉冷却壁、高炉内衬检测、高炉送风支管检测、焦炉
连铸板坯、热风炉、热风炉拱顶检测、退火炉、鱼雷罐车、转炉炉衬等。
石化专用设备:蒸馏塔、储罐液位检测、反应器、换热器等。
轨道交通专业设备:接触网检测、电力机车车头检测、高架箱梁渗水检测、高铁高价桥梁防水层检测、黑体炉检测、接触网检测、轮轴温度检测等。
加工和热处理:焊接、铸件、模具、炼钢炉、转炉、鱼雷车、炉壁、金属热处里(退火、回火、淬火)、冷/热轧钢板、钢卷线材等温度量测监控等。
其他专用设备:滚筒干燥器、胶辊检测、吹瓶机瓶坯温度检测、金属管密封性能检测、机房应用、铅酸电池桥接检测、泡罩包装等。
|
|
|
电路研发、电源检测、LED灯具散热片检测、LED灯罩检测、LED检测、LED芯片检测、LED芯片散热检测、LED照明灯具检测、医疗器械、发动机燃油喷嘴检测、塑料改性检测、模具检测、太阳能热斑、CRT检测、CD检测、PV逆变器、冰箱制冷剂泄漏检测、产品壳体温度检测、电熨斗、评测电子产品的发热、刹车片、加热座椅、轮胎、汽车电器、汽车发送机、汽车焊接机器人、汽车后风挡、汽车前风挡、汽车前照灯、电机绕组检测、锂电池检测、铅酸电池桥接检测。
|
|
|
建筑诊断:外墙空鼓、剥落、屋面渗漏、管道、热桥、节能研究、地暖检测、竣工验收等;
公路桥梁:可用于快速扫描公路裂纹、桥梁开裂、渗漏检查、沥青摊铺等;
|
|
|
军事应用:导弹制导,红外雷达,炸药性能提升,红外夜视、红外隐身等。
消防安保系统:可用于消防科研、火灾救人、安保、走私监控等。
波段、测温范围、空间分辨率、测温精度、热灵敏度
不一样,夜视仪不是热成像,只有夜黑天有效,有月光等光效果甚差。红外热像则不受任何影响,大白天也一样用。
红外热成像仪也就是红外成像仪,红外热成像仪是一种非接触式的通过探测器探测红外(热)能的测温设备,并将其转化成电子信号加以处理,进而在视频显示器生成热图像。而红外测温仪是利用光电探测器,利用红外能量聚焦...
利用的是红外线传播时的不扩散原理因为红外线在穿越其它物质时折射率很小所以长距离的测距仪都会考虑红外线而红外线的传播是需要时间的当红外线从测距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到...
红外热像仪是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273℃)的物体都会发出红外辐射。
红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。
人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C(0.005°F)的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。
热像仪的不同性能和功能如像素、测温范围、镜头等可配合不同的现场使用需要,下面是对部分典型应用的选型建议。
1.设备维护
A电气设备
●高温量程一般到200℃即可。
●考虑到有部分设备可能在室外工作,低温量程一般要求到达-20℃。
●对于一般的电气设备或部件,热像仪像素在160×120,并选用标准镜头。
●对于远距离、小目标测量(如输电线路的线夹等),建议选用320×240像素或640×480像素及更高像素,并选配长焦镜头。
●对于近距离、大目标测量(如1米内在1幅热图中显示整个配电柜的温度分布),建议选配广角镜头。
●对于温差较小的目标(如交流高压电气设备等),建议选用热灵敏度较高的热像仪。
●若现场需要有长时间连续检测要求,请选用外接电源。
B机械、机电设备
●根据实际温度选择高温至250℃、350℃、600℃的热像仪。
●考虑到有部分设备可能在室外工作,低温量程一般要求到达-20℃。
●对于一般的机械、机电设备,热像仪像素在160×120,并选用标准镜头。
●对于部分远距离、小目标测量(如高空管道检测等),建议选配长焦镜头。
●对于部分近距离、大目标测量(如距离显示加热炉的整体温度分布),建议选配广角镜头。
●对于部分需要密封的设备(如测量密闭加热炉内部温度)进行检测,建议加装红外窗口组件。
2.研发、品质管理
●根据实际温度选择高温至250℃、350℃、600℃、1200℃、2000℃的热像仪。
●对于一般的目标(如芯片、电路板、各种器件等),建议选择热像仪像素为320×240或640×480像素及更高像素,并选用标准镜头。
●对于部分远距离测量,建议选配长焦镜头。
●对于小目标测量(如1mm×1mm以内的微小芯片温度分布),建议选配微距镜头。
●对于部分在密封外壳内的目标(如检测加热器内部的器件温度),建议加装红外窗口组件。
●对于有现场需要进行连续测量,建议选用有外接电源或视频输出功能的热像仪,部分现场可以选用有连续拍摄功能的热像仪。
3.建筑专用型热像仪
建筑专用型热像仪在2个参数方面有明显特点
●热灵敏度:因建筑应用中现场温差可能较小,故需要热灵敏度较高的热像仪进行检测。
●温度范围:建筑应用现场的温度(特别是高温部分)范围不大,故为了保证高重复精度及温度稳定性,建筑专用型的温度范围为-20-150℃。
除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择:
问题一:红外热像仪到底能测多远?
红外热像仪的检测距离=被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用FlukeTi25热像仪,其IFOV为2.5mRad,则最远检测距离为50÷2.5=20m
问题二:红外热像仪能测多小的目标?
最小检测目标尺寸=IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例:
某品牌热像仪FlukeTi25热像仪
空间分辨率(IFOV):2.6mRad
像素:320×240
最小聚焦距离:0.5m
最小检测尺寸:1
空间分辨率(IFOV):2.5mRad
像素:160×120
最小聚焦距离:0.15m.3mm
最小检测尺寸:0.38mm
从对比图看,右侧FlukeTi25,虽像素稍低,但凭借更小的IFOV及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm的目标。
问题三:热像仪能看得多清晰?
因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。
因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。
由右图可见,像素(马赛克)越小越清晰
什么是空间分辨率(IFOV)?
在单位测试距离下,红外热像仪每个像素能够检测的最小目标(面积),以mRad为单位,
是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技
术指标。
为什么空间分辨率(IFOV)越小越好?
单位距离相同时,IFOV越小,单个像素所能检测的面积越小,单位测量面积上由更多的像
素所组成,图像呈现的细节越多,成像越清晰。
大面积、小目标
评估储油罐的腐蚀或结构完整性监测潜在耐火砖劣化区域
案例解释:
目标尺寸通常超过10米,检测距离达到数十米,而需要查验的损坏部位的尺寸只有几十厘米,例如:钢厂热风炉的直径为10米,高度30-50米,但每块耐火砖宽度只有20厘米,客户需要既可以看到目标的整体热像图,也要能够看到耐火砖的脱落问题。
设备要求:
1超过300万像素,足够的视场角度及优异的空间分辨率,可以实现对较大面积/区域的目标进行整体和远距离全面地分析要求,同时又可以分辨/检测出很多难以发现的细节或细小问题点,提高检测全面性和效率的同时,避免遗漏或意外事故风险。
2最先进的聚焦方式选择,让聚焦更省时,LaserSharp®激光自动对焦,自动对焦,手动对焦和EverSharp多焦点记录功能,多种聚焦方式集于一身。保证您能够在几乎任何情况下都可以准确对焦,捕捉全部准确的数据;
3红外热图、视频录制、带红外数据的视频录像,以及Wifi传输方式,可以保证能够作为深度研究的有力依据。
相关应用:
l大型工业设备的维护,如石化企业的反应塔,蒸馏塔等,冶金企业的高炉等;
l隧道/大坝/桥梁渗水检测;
l地质研究/勘探、火山研究;
l建筑的维护,如机场、建筑群。
小温差
胚胎孵化监测蓝色低温代表死胎)植物病虫害检测
案例解释:
当检测目标的温差低至0.1℃以内时,需要有极高热灵敏度的热像仪才能发现细微差别,尤其是在科学研究领域。
设备要求:
1超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4倍(TiX1000的红外像素高达310万,TiX660的红外像素高达120万),可获得锐利的图像,提供目标更多细节。
2超优异的热灵敏度:此类现场的温差只有0.1℃,需要清晰地看到微小温差的问题点;TiX系列产品拥有更高的热灵敏度,如TiX640/660热灵敏度可达0.03℃,对于1℃的温差,可用超过30种颜色表示其温度的变化,能够显示出更体现更小的温差,提供更清晰的热像。
3高级对焦系统:提供了手动对焦、自动对焦及LaserSharp®自动对焦和EverSharp多焦点记录功能,可快速、准确地捕获对焦正确的图像。
4灰度和全彩色图像:可满足温差显示细节的要求,各种各样的应用。
5更大的数码变倍:TiX系列产品提供32倍的放大,可以任意缩放图像细节。
相关应用:
l材料工程化:受力分析,热应力分析,非破坏性试验,包括检查和分析复合材料的层离、空隙、吸湿和压裂,表面辐射。
l化学和生物科学:化学反应/变化研究,生物分析,动植物相关研究,医学/病理学等相关研究。
l复合材料和结构的NDT无损检测裂缝,空隙,分层,粘结,渗漏。
超远距离
水泥厂生产设备检测高压输电塔的线夹检测
案例解释:
电力公司维护人员在500米外对高压输电塔的进行巡检。
设备要求:
1超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4倍(TiX1000的像红外素高达310万,TiX660的红外像素高达120万),可获得锐利的图像,提供最大细节。
2超优异的空间分辨率:TiX系列产品在更高的像素下,配备适合的镜头,可以达到更加优异的空间分辨率,如TiX1000在配备120mm超长焦的镜头时,空间分辨率可以达到0.1mRad,也就是说理论上,可以在500m距离下,能够检测50mm尺寸目标(高压线夹)。
35.6英寸可旋转LCD大显示屏:可帮助您方便地检查难以触及设备的上方、下方及周围。
4可倾斜LCoS彩色取景器:分辨率为800x600像素,在日光下可提供最大可视性。
5高级对焦系统:提供了手动对焦、自动对焦及LaserSharp®自动对焦和EverSharp多焦点记录功能,可快速、准确地捕获对焦正确的图像。
6最大的镜头灵活性:利用现场可更换的可选镜头(2倍和4倍长焦镜头、两个广角镜头),无论距离远近,均可获得高分辨率图像。
7更大的数码变倍系数:TiX系列产品可以提供32倍的放大,在现场,您就可以利用32倍放大,分析更小的目标温度。
8带有语音和文字注释,800万可见光的录像功能:使得故障点记录、分析、存档更清晰、直观、简单、方便。
相关应用:
l高压供电设备维护;
l港口/码头塔吊电机维护。
微米级小目标
电路板中2x2mm芯片温度检测0.5x0.5mm小芯片及周边检测
(使用标准镜头)(使用微距镜头)
案例解释:
小型芯片温度检测,通常尺寸在2-3mm以内,芯片内部的功能组件在50μm以内。
设备要求:
1更优异的空间分辨率:TiX系列的超高像素配三款微距镜头,使您能够拍摄高分辨率图像,可以提供小目标,微小目标的检测方案,如测量几十微米(μm)目标尺寸。
TiX系列在精密位移成像技术模式下,分辨率和像素是标准模式的4倍(TiX1000的红外像素高达310万,TiX660的红外像素高达120万),可获得锐利的图像,提供最大细节。
2超优异的热灵敏度:TiX系列产品拥有更高的热灵敏度,如TiX640/660热灵敏度可达0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。
3高帧频模式:可利用TiX的高帧频模式(高达240Hz)监测目标的温度快速变化。这样就能够分析多帧数据,便于更好地理解小目标的温度变化。
4PC上回放和分析数据:利用随热像仪提供的SmartView®软件,优化和分析图像,并生成检查报告。您也可将结果导出至电子表格,做进一步、更详细的分析,以及互动式数据展示。
相关应用:
l微生物体研究;
l芯片及PCB线路,焊点检测;
l生产工艺/过程杂质检测;
l细小目标(如激光光纤)生产过程中温度均匀性检测。
高速温度变化/快速位移
烟花快速升空后的燃放瞬间发动机散热系统检测
设备要求:
1高帧频模式:可利用TiX的高帧频模式(高达240Hz),实现对高速温度变化/快速位移的目标进行连续检测,可以获得目标的温度变化趋势,或高速位移过程中,真实的温度值。
2实时辐射视频流记录:可以实时记录带温度数据视频,支持逐帧分析热过程和变化,更容易发现和确认真实的温度值,以及需要进一步检查的位置。
3更多的数据传输/存储方式数据可以快速传输/存储至:仪器内存/SDHC卡/USB/GigE
Vision/Wifi等,有力保证获取大量数据,作为深度研究的有力依据。
4超高分辨率图像+优异的热灵敏度:在精密位移成像技术模式下,分辨率和像素是标准模式的4倍(TiX1000的红外像素高达310万,TiX660的红外像素高达120万),结合TiX更高的热灵敏度,如TiX640/660热灵敏度可达0.03℃,可获得锐利的图像,提供更清晰、更多细节的目标热图。
5PC上回放和分析数据。利用随热像仪提供的SmartView®软件,优化和分析图像,并生成检测报告。您也可将结果导出至电子表格,做进一步、更详细的分析,以及互动式数据展示。
相关应用:
材料研究;摩擦力/碰撞/力学研究;车床刀具研究;发动机趋势研究;感应加热研究;
点胶应用;焊接/包装应用;其他应用:激光脱毛。
其他高端应用
设备要求:
1高温目标检测:TiX系列可以检测高达2000℃的高温目标,支持需要极端温度条件的检查工作。
2低温目标:TiX系列可以检测低至-40℃的低温目标,支持需要极端温度条件的检查工作。
3适应更低的工作环境:TiX系列可以在-25℃的环境下,长时间工作,适应更严酷的工作场合。
相关应用:
材料/发动机等高温目标检测、低温目标(培养皿保温)检测、严寒地区外部环境下/高低温箱内长时间检测等。
非制冷红外热像仪
1 红外成像阵列与系统 —非制冷红外热像仪简述 2 2013年 11月 8日 非制冷红外热像仪简述 摘 要:非制冷红外热像仪是目前主流的夜视观察仪器之一 ,因其较高的可 靠性在军事领域的低端应用、 民用等方面有广阔的前景。 它通过被测物体向外界 发出的辐射能量来得到物体对应的温度。 本文主要就非制冷红外热像仪的测温原 理、发展状况、系统设计及其性能参数做简单的分析及介绍。 比较了两种不同情 况下的测温公式的优劣并且做出了相关推导,简单介绍了基于 FPGA的非制冷红 外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。 对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数 3 The brief description of uncooled infrared thermal imager Yu Chun-k
红外热像仪知识
红外热像仪知识 随着科技的发展, 其实红外热像仪已经在很多行业中得到非常广泛的应用, 同时给大家 的工作带来了很大的帮助,为了进一步帮助大家了解红外热像仪的知识。 首先,大家需要清楚的是: 什么是红外热像仪?其实红外热像仪就是一个利用红外探测 器来成像的探测技术, 能够帮助我们探测到很多人们肉眼看不到的东西, 让我们的探测分析 更加可靠,尤其是它能够在非常恶劣的条件下进行工作, 同时还能够探测到那些隐蔽的事物, 是一个探测性能比较好的工具。 其次,红外热像仪在我们的工作中带来了很大的便利, 大家需要对其进行重新的认识和 定位,因为它和传统的探测技术之间存在着很大的差别, 它能够在浓雾天气、 黑夜等环境下 进行探测,不会影响到探测技术。 最后,这一工具在很多的行业中都有应用, 它能够帮助大家快速有效的得到可靠的数据, 方便大家工作的开展, 因此是一个高性能的技术, 值得大家的选择。 比如打猎
电力、电讯设备过热故障预知检测,在电力系统和设备维修检查中,红外线热像仪证明是节约资金的诊断和预防工具。
测量电器设备,非接触红外线热像仪可以从安全的距离测量一个物体的表面温度,使其成为电器设备维修操作中不可缺少的工具。
红外热像仪可以有效防止设备故障和计划外的断电事故的发生.
下面是需要采用红外热像仪进行检查的部分设施:
a:电气装置:可发现接头松动或接触不良,不平衡负荷,过载,过热等隐患。这些隐患可能造成的潜在影响是产生电弧、短路、烧毁、起火。
b:变压器:可以发现的隐患有接头松动,套管过热,接触不良(抽头变换器),过载,三相负载不平衡,冷却管堵塞不畅。空冷器件的绕组可直接用红外热像仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。其影响为产生电弧、短路、烧毁、起火。
c:电动机、发电机:可以发现的隐患是轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。其影响为有问题的轴承可以引起铁芯或绕组线圈的损坏;有毛病的碳刷可以损坏滑环和集流环,进而损坏绕组线圈。检查发热点,在出现的问题导致设备故障之前定期维修或者更换。
电动机线圈绝缘层——通过测量电动机线圈绝缘层的温度,延长它的寿命。还可能引起驱动目标的损坏。为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。
d:连接器:电连接部位会逐渐放松连接器,由于反复的加热(膨胀)和冷却(收缩)产生热量、或者表面脏物、炭沉积和腐蚀。非接触红外热像仪可以迅速确定表明有严重问题的温升。
电动机轴承:
e:各相之间的测量:检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同
f:不间断电源:确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。
备用电池:检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。
g:镇流器:在镇流器开始冒烟之前检查出它的过热。
h:公用设施:确定出连接器、电线接头、变压器和其他设备的热点,一些型号的光学仪器范围在60:1甚至更大,使几乎所有的测量目标都在测量范围内。
温变早于病变,通过医用红外热像仪接收人体发出的远红外线,得到人体体表详细精确的温度信息,由计算机处理后组成人体的红外线热像图,为医生提供疾病诊断的重要依据。
医用红外热像仪(MTD俗称:“热CT”)介绍
温变早于病变,预警人体健康
1、红外热像仪的发展状况
医用红外线热像仪同CT、核磁共振并列为医学八大影像诊断仪器之一。我国从1991年开始研究医用红外线,至今已经取得了显著成果,PLUS系列医用红外热像仪的精度,已由1991年的0.1℃发展到0.01℃,空间分辨率也已由2MARO提高到0.5-0.8MARO,从模糊的红外热图到清晰的红外线热像图,被临床充分认可。2、红外热像仪的基本结构
由摄像头部、处理器(计算机)和显示器三大部分组织。
3、红外热像仪的诊病原理
零度以上的物体都是一个热能辐射源,不断向周围散发红外辐射。人体也是一样由于体内各组织的代谢功能不同,体表温度并不一致,当人体发生某种病变或生理变化时,该处温度亦会因其血流和代谢变化的异常温度而偏离正常。红外热像仪正是利用这一生理特征,通过热像仪镜头接收人体发出的8-14UM的远红外线,得到人体体表的详细精确的温度信息,这些温度数据由计算机处理后5秒钟即可扫描成为一幅人体的红外热图并以不同的颜色分布显示,临床工作者可以据以诊断疾病。