选择特殊符号
选择搜索类型
请输入搜索
前言
序
导论
第一部分 结构理论
第一章 力学
第二章 材力
第二部分 桁架系统
第三章 缆索系统
第四章 桁架系统
第五章 空间桁架
第六章 球形空间桁架
第三部分 框架系统
第七章 柱与墙
第八章 梁与板
第九章 框架
第四部分 悬索系统
第十章 悬索
第十一章 帐篷
第十二章 充气式构造
第十三章 拱
第十四章 拱顶
第五部分 薄壳系统
第十五章 薄壳
第十六章 折板
第六部分 系统构成
第十七章 结构材料
第十八章 结构分布
附录 结构设计初部步骤
绘制图
参考书目
索引2100433B
计算在结构上所占的分量常为人所误解。许多结构设计大师,常在决定结构系统之后,才进行计算,此时的计算式通常也在认证当初所选择的结构系统。而许多结构的入门教材,在一开始时即强调结构计算。
本书的作者在本书中即以基本、少量的计算,来阐述结构系统如何作用。以最简要的方式,来解释自重、风力、地震等对缆索、拱、桁架、梁、柱、楼板所造成的压力、张力等。建筑师对结构的了解,不仅限于表面,更需深入其本质,这些结构特性与构件材料亦有关,需视材料为钢构、混凝土、石材还是木材而定。作者巧妙地强调各种结构特性荷重的分布情形,使得读者无论到哪个工地,都可很快地掌握构造物的结构特性。更重要的是,借由许多著名案例的解析,本书可令读者很快地了解结构设计的重点。
目前世界上正使用的能源有以下几种: (一)石油 石油素有“工业的血液”之称,是当今世界最重要的能源,又是近代有机化工的重要原料。石油泛指各种天然形成的可燃性液态碳氢化合物,常含有氧、氮、石蜡及硫等组分...
自己算吧
多少字的?中文还是英文?
货架钢结构系统的分析
货架钢结构系统的设计分析过程是非常复杂的。如果设计不恰当,或者会浪费材料,增加自重,提高成本,或者会因局部结构强度不够而埋下安全隐患。由于超静定桁架结构、静定桁架结构或钢架结构是货架钢结构中的主体形式,其中超静定桁架结构
货架钢结构系统的分析(二)
(接上期)5.冷弯薄壁多孔货架立柱压杆稳定性计算及分析货架立柱多采用冷弯薄壁多孔结构,且通过多折面截面形式来提高货架的屈曲后实际承载能力,若孔位于板件的无效部位,此开孔板件的有
结构系统主要可依力量传递的部分区分为:
垂直传递:即以负责将板、梁等水平力传递至支承点的构件来分,大致分为:
柱系统。
墙(或剪力墙)系统。
悬吊系统。
水平传递:即以负责传递水平力的构件来分,大致分为:
梁系统。
板系统。
特殊板系统,大垮距之无梁板或华福楼板系统。
分向传递系统:为利用较特殊之外型,将力的方向改变或分散传递至支承处,如:
拱。
折板等形抗结构。
悬索。
整体结构等。
光伏结构系统的设计要点:
一、结构设计的一般原则
1.1光伏面板的结构可按下列方式分为两类:
(1)分离式光伏面板: 只具有发电功能,不作为围护结构的面板;建筑需要围护功能时须另设密封的采光顶或幕墙。这种面板要设单独的支架,支架连接在主体结构上。因此这种光伏建筑是一体化设计,两层皮。
(2)合一式光伏面板:既具有发电功能,同时又是采光顶或幕墙的面板。又称为建材式光伏面板。由于发电和建筑功能合一,因此建筑外皮只需一套面板,一套支承。这种光伏建筑是一体化设计,一层皮。合一式光伏结构系统与普通玻璃幕墙和采光顶大体相同,可以套用玻璃幕墙和采光顶的设计方法;分离式光伏结构系统在普通玻璃幕墙和采光顶的外侧另外附加了一个单独的结构,工作性质又不同于一般的幕墙和采光顶,必须进行专门的设计。
1.2光伏结构系统应进行结构设计,应具有规定的承载能力、刚度、稳定性和变形能力。结构设计使用年限不应小于25年。预埋件属于难以更换的部件,其结构设计使用年限宜按50年考虑。大跨度支承钢结构的结构设计使用年限应与主体结构相同。
1.3光伏结构系统的设计目标是:在正常使用状态下应具有良好的工作性能。抗震设计的光伏结构系统,在多遇地震作用下应能正常使用;在设防烈度地震作用下经修理后应仍可使用;在罕遇地震作用下支承骨架不应倒塌或坠落。
1.4非抗震设计的光伏结构系统,应计算重力荷载和风荷载的效应,必要时可计入温度作用的效应。抗震设计的光伏结构系统,应计算重力荷载、风荷载和地震作用的效应,必要时可计入温度作用的效应。
1.5光伏结构可按弹性方法分别计算施工阶段和正常使用阶段的作用效应,并进行作用效应的组合。
1.6光伏结构系统的构件和连接应按各效应组合中最不利组合进行设计。
1.7光伏结构构件和连接的承载力设计值不应小于荷载和作用效应的设计值。按荷载与作用标准值计算的挠度值不宜超过挠度的允许值。
二、荷载和作用
2.1光伏结构系统应分别不同情况,考虑下列重力荷载:(1)面板和支承结构自重(2)检修荷载(3)雪荷载。
2.2光伏结构系统的风荷载,应按国家标准《建筑结构荷载规范》GB 50009 2006版本采用。设计时应分别考虑:(1)分离式光伏面板的风荷载应计入迎风面风荷载和背风面风荷载;(2)支架的风荷载应计入面板传来的风荷载和支架直接承受的风荷载;(3)合一式面板系统应分别采光顶和幕墙的风荷载,按相应规范采用
2.3分离式光伏结构系统应考虑突出屋面小结构的地震力放大作用。必要时可将其作为独立的质点,连同主体结构一起进行地震反应分析。屋面上的分离式光伏系统结构具有一定的质量和刚度,相当于一个小楼层,但是其质量和刚度又远小于主体结构的质量和刚度。放在屋面上的地震反应要比放在地面上要强烈得多,称之为鞭梢效应。放在屋面上,地震力比放在地面上放大可达3~5倍,取决于它与主体结构的质量比和刚度比。
2.4合一式光伏结构面板和支承结构的地震力计算与一般玻璃幕墙相同,可按照行业标准《玻璃幕墙工程技术规范》JGJ 102-2003 的规定进行。
2.5分离式光伏结构的支架暴露于室外,应考虑温度作用的影响。必要时可进行钢支架的温度应力计算。
2.6光伏结构系统的荷载组合可按照行业标准《玻璃幕墙工程技术规范》JGJ 102-2003 的规定进行。光伏采光顶和斜墙的重力荷载会产生平面外方向的作用分力,它与风荷载和地震力的作用相叠加,计算时应注意。重力荷载起控制作用的组合,重力荷载的分项系数应取为1.35.风荷载起主要作用的组合,地震作用的组合值系数应取为0.5.
三、面板设计
3.1面板的玻璃应能承受施加于面板的荷载、地震作用和温度作用。其厚度除应由计算确定外,尚应满足最小厚度的要求。
3.2分离式面板夹胶玻璃中的单片玻璃,厚度不应小于4mm.
3.3用作采光顶和幕墙的合一式面板,夹胶玻璃中的单片玻璃厚度不应小于5mm;幕墙中空玻璃的内侧采用单片玻璃时,厚度不应小于6mm.
3.4有光伏电池的夹胶玻璃,外片宜采用超白玻璃。夹胶玻璃的内外片,厚度相差不宜大于3mm.
3.5无中空层的单片夹胶玻璃,不宜采用Low-E镀膜;有中空层的夹胶中空玻璃,Low-E镀膜应朝中空层。
3.6合一式面板应采用PVB夹胶膜;分离式面板可采用PVB夹胶膜,也可采用EVA夹胶膜。非晶硅电池的夹胶玻璃宜采用PVB夹胶膜。
3.7采光顶采用中空玻璃时,室内侧也应采用夹胶玻璃;斜玻璃幕墙采用中空玻璃时,朝地面一侧宜采用夹胶玻璃。
3.8夹胶玻璃宜采用半钢化玻璃或浮法玻璃,可采用钢化玻璃。点支承面板应采用钢化玻璃。钢化玻璃有1%~3%的自爆率,即使经过二次热处理也还有0.1%~0.3%的自爆率。而半钢化玻璃和浮法玻璃不会自爆,夹胶后成为安全玻璃。所以如果承载力足够,完全不必采用钢化夹胶玻璃,以免使用后更换玻璃的困难。点支承玻璃开孔处局部应力很大,只有强度高的钢化玻璃才能满足承载力的要求。
3.9 面板的结构计算应按《玻璃幕墙工程技术规范》JGJ 102-2003的规定进行。规范中已列出了边支承玻璃板和点支承玻璃板的计算公式和计算用表,可直接采用。
3.10 由荷载及作用标准值产生的面板挠度,边支承面板不宜大于短边的1/60;点支承面板不宜大于沿较大边长支承点间距的1/60.
四、支承结构设计
4.1支承结构设计应遵照《钢结构设计规范》GB 50017-2003 和《铝合金结构设计规范》GB 50429-2007 的规定进行。
4.2分离式面板的钢支架构件的截面厚度不应小于3.0mm,其钢种、牌号和质量等级应符合现行国家标准和行业标准的规定。钢材之间进行焊接时,应符合现行国家标准和行业标准的规定。
4.3分离式面板的钢支架应采取有效的防腐措施。当采用热浸锌防腐处理时,锌膜厚度不宜小于80微米。采用氟碳喷涂时涂膜厚度不宜小于40微米。采用防锈漆或其他防腐涂料时应遵照相应的技术规定。腐蚀严重地区的钢支架,必要时可预留截面的腐蚀厚度。
另外,圆管、方管等闭口钢型材,其内侧表面难以进行防腐处理,也可以留出腐蚀厚度。在通常条件下,钢材截面的腐蚀速度大概不超过每年0.02mm.这样一来,钢型材截面厚度额外增加1.0mm,就可留出单面腐蚀50年或双面腐蚀25年的余量。
4.4在风荷载标准值作用下,分离式面板支架的顶点水平位移不宜大于其高度的1/150.
4.5合一式面板的支承结构设计,应按《玻璃幕墙工程技术规范》 JGJ 102-2003 的规定进行。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
目录
前言
第一结论
1.1结构九部件可靠性理论的研究与发展
1.2结构系统可靠性理论的早期研究与发展
1.3可实证的结构系统可靠性理论的研究与发展
1.4结构系统可靠性分析的统~理论与智能化体系
参考文献
第二章先进拟合优度检验方法及应用
2.1母体分布拟合优度检验的X2检验法
2.2EDF统计量的构造与算法
2.3EDF统计量的特性及样本容量修正方法
2.4拟合优度检验