选择特殊符号
选择搜索类型
请输入搜索
接收站是地面卫星接收站的简称。卫星地面接收站可分为三种类型。
与原来鑫诺3号一样。如果原来收的就是鑫诺3号。现在不用任何改动,就可直接接收。现在还不稳定。到时稳定了之后,把需要调整的参数统一调整,以便收全所有频道。信号有些弱。请看场强图:6A与鑫诺3。
我国遥感卫星地面站完成了密云、喀什、三亚站三站组网,已全面建成,形成了覆盖全国疆土的卫星地面接收站网格局。
不听中波当然就不用磁棒了。不能说明电路没问题; 短波与位置时间是有关系,但是跟天线和电路的关系大着呢调频都是本地台,信号强,台也多,信噪比高,收台多很正常短波多为远距离台,信号弱,信噪比低,受传输介质...
沿海LNG接收站
港口名 停泊能力( wm3)储运能力 (wm3) 1 深圳港 8-16.5 2*16 370万吨 /年。 2 江苏如东港 12-16 3*16 一期规模为 220万吨 /年,二期规模达到 600万吨 /年。 3 天津港 15 t 4*16 一期规模为 350万吨 /年,二期规模达到 600万吨 /年。一 4 上海洋山港 16 3*16.5 300万吨 /年 5 福建莆田湄洲湾 8-16.5 4*16 260万吨 /年 6 珠海 8-27 3*16 900万吨 /年 7 浙江舟山新奥 - - 筹建 8 启东广汇 - - 筹建 9 浙江北仑 8-26.6 3*16 300万吨 /年 10 河北秦皇岛 - - 筹建 一期规模为 200万吨 /年,二期规划达到 300万吨 /年。 11 海南洋浦 /八所 - - 筹建 12 温州 17.5 8-10*16 300万吨 /年 13 辽宁省营口 - -
LNG接收站建设综述
LNG接收站建设综述
SIL分析在福建LNG接收站中的应用
黎晖 陈彬 田均 陈剑健 陈 实
中海福建天然气有限责任公司
LNG(液化天然气)的气化及输送过程中存在易燃易爆介质,而且具有连续化、自动化和立体化特点,任何一个设备或部件出现故障,都有可能导致“连锁反应”,影响站场的安全运行,因而迫切需要应用先进的管理理念对接收站实施管理。
安全仪表系统( Safety Instrumented System:SIS)是保障装置工艺安全运行的重要措施,但其安全联锁控制方案配置是否合理,需要采用安全完整性等级(Safety Integrity Level: SIL)评估技术进行分析评估。本文探讨了SIL分析在LNG接收站中的应用。
1 安全完整性等级
国际电工委员会(IEC)发布的安全仪表系统(SIS)的标准定义是,专用于安全的控制系统。在生产装置或是设备可能发生危险或不采取措施危险会恶化的状态下,安全仪表系统可以控制联锁或使装置停车,从而避免其进入危险工况,保证生产、设备、环境和人员的安全,使危险和损失降到最低。
为了使安全相关系统达到相应的要求,需用安全完整性等级(Safety Integrity Level,SIL)来衡量系统实现风险降低的能力。IEC61508中将SIL划分为4级,SIL1表示能将风险降低1级,即使系统出现事故的概率降低为原来的十分之一;SIL4表示能将风险降低4级,也就是说使系统发生事故的概率降低为原来的万分之一。安全完整性等级的级别越高,系统的结构就越复杂,相应出错的概率也就越低[1-2]。具体的安全完整性等级划分见表1。
低要求操作模式是指,对一个安全相关系统提出的操作要求的频率小于或等于每年1次并且小于或等于2倍的检验测试频率的安全仪表功能。其余为高要求操作模式。
2 SIL定级和验证
2.1 SIL定级
IEC61511-3(GB/T 21109-3)在附录中推荐了4种SIL定级方法:半定量方法、安全层矩阵法、校正的风险图及风险图[3-4]。
其中,校正的风险图法是指,在风险评估(如HAZOP)基础上,采用风险图表(RISKGRAPH)的方法确定安全仪表功能的完整性等级。风险图表法通过4个参数之间的关系,反映出当安全仪表系统故障或安全仪表系统未设置时可能出现的危险状态。这4个参数是:
S 危险事件后果(后果参数)
F 人员在多次暴露的危险区域的出现频率(暴露参数)
P 避免危险事件后果的可能性(避免参数)
W 有害事件发生概率(需求参数)
图1 安全风险图
图1为S、F、P、W 4个参数与SIL等级之间的对应关系。评估出S、F、P、W 4个参数的级别,就可确定对应的SIL等级。
2.2 SIL验证
SIL验证就是通过检验和测试,证明安装完毕并调试了的安全仪表系统达到了安全要求规格书中规定的要求。
SIL验证包含以下6个部分:①审查实际安全仪表系统与技术文档的一致性。②检查安全仪表系统的全部功能是否满足规格书要求。③检验安全仪表系统的各项主要功能。④测试异常操作情况下安全仪表系统。⑤审查安全仪表系统的硬件结构是否符合IEC61508要求。⑥计算安全仪表系统中安全功能的安全完整性等级。
(1)IEC61508对硬件结构的约束
A型和B型相关子系统的结构约束将会依照IEC61508-2 中的相关表格(见表 2、3),SIL等级将会受限于安全失效分数(SFF)和硬件故障裕度(HFT)。
(2)安全失效分数
利用FMEA(Failure Mode Effect Analysis)分析方法可将仪表故障分为4种模式(见表4):显性安全故障λsd(如雷达液位计高频模块故障)、隐性安全故障λsu(如电流输出短路)、显性危险故障λdd(如压力传感器损坏)和隐性危险故障λdu(如电流输出“冻结”)。
安全失效分数(Safe Failure FractionSFF)计算公式如下:
SFF= (λsu + λsd + λdd )/(λsu + λsd +λdd + λdu )
(3)硬件故障裕度
硬件故障裕度(HFT)指部件或子系统在出现一个或几个硬件故障的情况下,功能单元继续执行所要求的仪表安全功能的能力。硬件故障裕度是对冗余程度的一种描述。一个硬件故障裕度(HFT)N意味着N+1个故障将引起安全功能丧失。除了通过合适的设备选择以外,还可以通过子系统冗余设计满足所需要的安全等级。表5是ANSI/ISA-84.00.01给出的有关现场设备的最小故障裕度(HFT)与SIL等级的对应关系。
可以通过增加硬件故障裕度的方式来获取较高的SIL等级。2.3 SIF回路的 PFD值计算
(1)整体计算思路
安全仪表功能的平均失效概率(PFD)由各元件相叠加,利用“故障树”来完成,如图 2所示。
图2 安全仪表功能(SIF)的故障树
每个元件的平均故障率为
λ = 故障率;
TI = 功能测试间隔;
安全仪表回路的PFD值为:
PFDSIF=PFD传感器+PFD逻辑单元+PFD执行单元
(2)共因失效的处理
仪表回路故障可分为2类:硬件随机故障和系统故障。
前者假定任何元件随机发生导致仪表回路故障,独立的硬件随机故障的发生有一定的概率,这个概率是可以计算出来。来自于一个单个原因引起的共同原因故障,可能影响超过一个器件而导致仪表回路故障,这些故障叫作系统故障。这样的故障包括设计或错误的规范、制造错误、维护能力差等。外部原因也可以导致系统故障(如火灾、水灾、电源故障或无仪表风等)。
β系数方法适合用来估算仪表回路的共同原因故障。根据IEC61508-6 典型的共同原因故障的β值在1%~10%范围内。因此,10%可以作为共同原因故障导致危险发生的β值。
PFD共因 β = 系数用于传感器和最终元件PFD值的计算, β×PFD器件
3 SIL在LNG接收站的应用
3.1 资料准备
(1)SIL定级
①管道和仪表流程图(P&ID)。②设计基础。③工艺控制说明。④仪表控制逻辑图或因果图。⑤危险分析结果。⑥SIL主席要求提供的其他资料。
(2)SIL验证
①管道和仪表流程图(P&ID)。②工艺控制说明。③安全仪表系统安全手册、安全要求规格书。④安全仪表系统硬件设计图、网络结构图。⑤安全仪表系统硬件失效参数。⑥安全仪表系统仪表控制逻辑图、因果图及说明。⑦安全仪表系统调试记录和报告。⑧安全仪表系统的变更和人员培训记录。⑨SIL主席要求提供的其他资料。
3.2 执行者
(1)SIL定级
经过专业培训的SIL主席、SIL秘书、仪表工程师、工艺工程师、安全工程师等组成SIL分析小组进行SIL分析。其他专业人员(如检维修人员、设备工程师等)必要时应参会解答相关问题,帮助会议顺利进行。
(2)SIL验证
经过专业培训的SIL主席和SIL秘书进行资料收集、现场检查及SIL验证分析,编写SIL验证报告,并提交SIL验证小组审查。SIL验证小组应至少包含仪表工程师、工艺工程师、安全工程师等各专业人员。
3.3 SIL定级和验证结果
本次SIL定级研究共针对64个SIF进行了分析。分析过程中分别考虑了针对安全、环境和资产的SIL要求,从而确定总体的SIL要求。SIL定级分析的结果汇总见表6。
注1:表示无特殊安全要求 (回路在SIS中保留)
注2:表示无安全要求
本次SIL验证回路共51个,SIL等级要求分别为SIL1、SIL2二种。对于验证无法通过的回路,提出了相应的整改方案。部分验证结果见表7。
对于不满足要求的14-PALL-0009,提出相关建议。
(1)分析联锁的基本功能要求,分析是否能够减少回路中最终元件的数量。
(2)改变执行元件中01-XS-0032A 的检验周期,由1次/3月改为1次/月,计算PFDavg能不能满足SIL2要求。
4 结论
对福建LNG接收站安全仪表系统进行安全完整性等级评估,及时发现安全仪表系统设计或应用的不足,提出改进措施,保证安全仪表系统的合理性和有效性,对保证接收站的安全运行、防止发生重大事故具有重要意义。随着SIL分析在我国的推广,必将在提升工业安全性能、降低用户成本等方面发挥更大作用。
参考文献:
[1]IEC61508:Functionsafetyelectrical,electronic,progr ammableelectronic safety-related systems,2010
[2] GB/T20438:电气/电子/可编程电子安全相关系统的功能安全, 2006
[3]IEC61511:Function safety: safety Instrumented Systems for the process industry sector, 2003
[4]GB/T21109:过程工业领域安全仪表系统的功能安全, 2007
作者:黎晖,男, 1972年生,硕士,中海福建天然气有限责任公司副总经理,主要研究方向为: LNG站线项目生产管理、设备设施完整性管理、长输管线建设、数字化管道建设与应用。
来源:《管道保护》2017年第3期(总第34期)
给个再走吧
《用于液化天然气接收站卸船管线的冷循环系统》提供一种用于液化天然气接收站卸船管线的冷循环系统,用以使液化天然气接收站的卸船管线在非卸船工况时保持低温冷态。
《用于液化天然气接收站卸船管线的冷循环系统》提供了一种用于液化天然气接收站卸船管线的冷循环系统,其包括卸船管线、低压输出总管、第一连接管线和第二连接管线,还包括:冷却循环管线、流量控制阀、流量传感器、流量控制器和第一开关阀,其中,冷却循环管线与低压输出总管相连接,低压输出总管中的一小股液化天然气经冷却循环管线返回至码头处,并将其中一小部分液化天然气返回至储罐,其余大部分液化天然气经卸船管线返回低压输出总管;流量传感器设置在冷却循环管线上,第一流量控制阀设置在低压输出总管上,流量传感器与第一流量控制阀通过流量控制器相连接,流量控制器根据流量传感器测得的冷却循环管线中的冷循环流量控制第一流量控制阀的开度;第一开关阀设置在冷却循环管线上。
较佳的,上述冷循环系统还包括:手动遥控阀,设置在冷却循环管线上。
较佳的,上述冷循环系统还包括:第二开关阀,设置在第二连接管线上。
较佳的,上述冷循环系统还包括:第三开关阀,设置在卸船管线靠近液化天然气储罐的一端。
较佳的,上述冷循环系统还包括:第四开关阀,设置在第一连接管线上。
较佳的,上述冷循环系统还包括:手动开关阀,设置在卸船管线上。
较佳的,第一开关阀、第二开关阀、第三开关阀、第四开关阀、手动遥控阀和手动开关阀分别与设置控制室内的遥控操作按钮相连接。
较佳的,上述冷循环系统还包括:温度传感器,设置在卸船管线上。
在上述实施例中,当LNG接收站处于非卸船运行工况时,从低压输出总管抽出一股LNG流体,经过冷循环管线返回到码头上与卸船管线的末端相接,然后流经卸船管线,再循环回到接收站的低压输出总管或LNG储罐,以此保持卸船管线中始终有低温LNG流动,保持其处于低温冷态待用。由于环境热量漏入LNG管线,从而产生额外的蒸发气,而LNG储罐的压力低、空间大,如果冷循环回流的LNG全部回到LNG储罐,会闪蒸形成大量的蒸发气,需要增加BOG压缩机的能力或者运行负荷,带来接收站运行能耗的增加,因此,按照《用于液化天然气接收站卸船管线的冷循环系统》将大部分循环的LNG不经过减压,直接返回到LNG低压输送总管,进而向下游外输,将节约大量的能量;同时,另外的一小部分经LNG储罐进料阀旁路阀MV-1返回到LNG储罐中,保持了LNG储罐一侧的卸船管线的低温冷态。从而实现了当接收站处于非卸船工况时,使长距离的卸船管线保持低温冷态,并能够通过控制,使接收站其它部分的设备和系统不受影响,可靠运行。
一、避免了大量蒸发气的产生。如果全部冷循环流量都返回至储罐,由于储罐的压力低、空间大,会闪蒸形成大量的蒸发气,需要增加BOG压缩机的能力或者运行负荷,带来接收站运行能耗的增加,《用于液化天然气接收站卸船管线的冷循环系统》将大部分循环的LNG不经过减压,直接返回到LNG低压输出总管,进而向下游外输,将节约大量的能量;同时,另外的一小部分经LNG储罐进料阀旁路阀MV-1返回到LNG储罐中,保持了LNG储罐一侧的卸船管线的低温冷态。从而实现了当接收站处于非卸船工况时,使长距离的卸船管线保持低温冷态,并能够通过控制,使接收站其它部分的设备和系统不受影响,可靠运行。
二、冷循环流量调节准确。由于卸船管线较长,且管径非常大,相对下游的再冷凝器等单元较远,冷循环管线因只需要维持低温冷态的流量而比较细,所以LNG更倾向于流向下游设备而非循环到码头处,通过设置在LNG低压输出总管的流量控制阀FCV-1来控制用来冷却卸船管线的冷循环流量,可以更好的保证抽出的冷循环流量;另外,在冷循环管线上又设置了手动控制阀,也具有流量调节的功能,在控制室远程控制冷却循环管线的开闭和流量大小,可以避免每次循环初始时流量突然很大造成低压输出总管下游瞬时压力降低过快的问题。
三、卸船和冷循环操作稳定可靠。在卸船或者冷循环操作工况下,HCV-1和XV-4不能同时开启,通过设置内部联动控制设施来确保此要求的实现,确保了卸船和冷循环操作的稳定可靠。
《数字卫星接收站的安装与调试》以典型的数字卫星接收系统为例,全面系统地介绍了数字卫星接收站各种部件的连接方法及整个系统的安装、架设和调试过程。重点在于操作技能的要求和实训的演练。同时还对有关卫星广播的基础知识和相关产品的实用技术进行了专门的介绍。并以图解的方式将小型数字卫星接收站的安装、架设、寻星、调试的实际操作过程演示出来。此外,还介绍了数字卫星接收系统在数字有线系统中的应用方法和典型实例。全书涵盖了有关国家职业资格认证考核的内容,适用于“双证书”教学与实践。