选择特殊符号
选择搜索类型
请输入搜索
激光增益介质在泵浦作用下,会发生自发辐射,自发辐射的光在介质中传输会发生受受激辐射,产生光放大。由于腔镜的存在,只有垂直腔镜的光纤可以不断放大,最后输出。泵浦的作用是给增益介质提供能量。
半导体泵浦固体激光器的种类很多,可以是连续的、脉冲的、调Q的,以及加倍频混频等非线性转换的。工作物质的形状有圆柱和板条状的。不同种类的激光器工作原理也不太相同,下面主要介绍端面泵浦固体激光器和侧面泵浦...
半导体泵浦激光器产生废热少,所需冷却系统小,一般只需1匹的冷水机即可,需灯泵浦激光器一般都需要二匹以上的冷水机,同时需要较大水泵以提供较大的冷却水流。因此其运行灯泵浦激光标记机的运行噪音较大,同时...
双端泵浦保偏光纤激光器
以两台808 nm半导体激光器LD1和LD2为泵浦源,对光纤激光器双端泵浦进行了研究,获得了6.5 W的激光输出。实验分别测出了LD1和LD2半导体激光器单端泵浦和双端泵浦时的输出功率,对双端泵浦输出功率与单端泵浦功率之和进行了比较,利用双端泵浦提高了泵浦效率和输出激光功率。同时测量了输出激光的偏振度,通过计算得到双端泵浦输出激光的偏振度为0.5。
1 .直接端面泵浦
直接端面泵浦的结构包括三个部分: 激光二极管泵浦源(由激光二极管阵列、驱动源和致冷器组成) ,光学耦合系统和激光棒和谐振腔。泵浦所用的激光二极管阵列出射的泵浦光,经由会聚光学系统将泵浦光耦合到晶体棒上,在晶体棒左端面镀有多层介质膜,对泵浦光的相应波长为高透、而对产生的激光束的相应波长为高反,腔的输出镜为镀有多层介质膜的凹面镜。
2.光纤耦合端面泵浦
针对直接端面泵浦方式的弱点,人们又进一步发展了光纤耦合的端面泵浦。端面泵浦激光器由激光二极管、两个聚焦系统、耦合光纤、工作物质和输出反射镜组成。与直接端面泵浦不同,这种结构首先把激光二极管发射的光束质量很差的激光耦合到光纤中,经过一段光纤传输后,从光纤中出射的光束变成发散角较小的、圆对称的、中间部分光强最大的泵浦光束。用这一输出的泵浦光去泵浦工作物质,由于它和振荡激光在空间上匹配得很好,因此泵浦效率很高。由于激光二极管或二极管阵列与光纤间的耦合较与工作物质的耦合容易,从而降低了对器件调整的要求。而且最重要的是这种耦合方式能使固体激光器输出模式好、效率高的激光束。
半导体泵浦固体激光器的种类很多,可以是连续的、脉冲的、调Q的,以及加倍频混频等非线性转换的。工作物质的形状有圆柱和板条状的。而泵浦的耦合方式可分为端面泵浦和侧面泵浦,其中端面泵浦又可分为直接端面泵浦和光纤耦合端面泵浦两种结构。
1、端面泵浦固体激光器
端面泵浦方式最大的优点就是容易获得好的光束质量,可以实现高亮度的固体激光器。端面泵浦的效率较高。这是因为,在泵浦激光模式不太差的情况下,泵浦光都能由会聚光学系统耦合到工作物质中,耦合损失较少;另一方面,泵浦光也有一定的模式,而产生的振荡光的模式与泵浦光模式有密切关系,匹配的效果好,因此,工作物质对泵浦光的利用率也相对高一些。
正是由于端面泵浦方式效率高、模式匹配好、波长匹配的优点在国际上发展极为迅速,已成为激光学科的重点发展方向之一。它在激光打标、激光微加工、激光印刷、激光显示技术、激光医学和科研等领域都有广泛的用途,具有很大的市场潜力。
2、侧面泵浦固体激光器
侧面泵浦(Side Pump)固态激光器激光头是由三个二极管泵浦模块围成一圈组成泵浦源,每个泵浦模块又由3个带微透镜的二极管线阵组成。每个线阵的输出功率平均为20W输出波长为808nm。该装置采用玻璃管巧妙地设计了泵浦腔和制冷通道。玻璃管的表面大部分镀有808nm的高反膜,剩余的部分呈120°镀有三条808nm增透膜,这样便形成了一个泵浦腔。半导体泵浦源发出的光经过三对光束整形透镜会聚到这三条镀增透膜的狭长区域内,然后透过玻璃管的管壁,被晶体吸收。由于玻璃管大部分区域镀有高反膜,使得泵浦光进入泵浦腔以后,便在其中来回的反射,直至被晶体充分地吸收,而且在晶体的横截面上形成了均匀的增益分布。
同时玻璃管还能用于制冷,高速通过的冷却水将产生的热量迅速带走。晶体采用的是一根复合结构的Nd:YAG棒,有效尺寸为j3*63mm,掺杂浓度为1.5at.%.当泵浦光功率为180W时,得到了72W的激光输出。光光转换效率高达40%。
半导体泵浦固体激光(英语:Diode Pump Solid State Laser,DPSS Laser),是一种新型激光器,应用层面比较广,近年在国际上发展很快。
半导体泵浦固体激光的激光器利用半导体激光器输出固定波长的激光作为泵浦源,替代了以往用氪灯或氙灯泵浦激光晶体,并且它们通常出现在绿色和其他颜色等的激光笔中。