选择特殊符号
选择搜索类型
请输入搜索
晶体滤波器crystal filter,用晶体谐振器组成的滤波器。与LC谐振回路构成的滤波器相比,晶体滤波器在频率选择性、频率稳定性、过渡带陡度和插入损耗等方面都优越得多,已广泛用于通信、导航、测量等电子设备。
石英晶体谐振器是最常用的晶体谐振器之一,它在滤波器中主要用作窄带通滤波器。钽酸锂 或铌酸锂晶体谐振器的耦合系数和频率常数较大,适于制做高频宽带通滤波器。其他压电材料因温度稳定性较差,很少采用。(见压电器件)。 当作用于晶体谐振器的电信号频率等于晶体的固有频率时,电能通过晶体的逆压电效应在晶体中引起机械谐振产生机械能;在输出端,正压电效应又将这种机械能转换为电信号。晶体谐振器及其等效电路和阻抗特性如图1。其中,L1、C1和R1分别代表晶体谐振器的动态电感、动态电容和动态电阻;C0为晶体支架和电极间的静态电容。R1通常很小,可忽略不计。这样,图1a的等效电路可视为纯电抗二端网络。谐振器的串联、并联谐振频率f1、f2以及比值f2/f1分别为
比值 f2/f1随比值C1/C0而异。这个特性可以用来调节晶体滤波器的通频带。例如,谐振器外接一个串联电容器,等效于C1减小、f1升高;而外接一个并联电容器,则等效于C0增大、f2降低。两者均可缩小f1与f2之间的间隔,即缩窄通频带。如果串接或并接电感器,则将增大频率间隔,展宽通频带。
因晶片不能做得很薄,石英晶体谐振器的基波频率只能达到30~35兆赫。工作频率较高的谐振器大多工作于泛音(高于基频近奇次倍的振动),但泛音次数越高,串、并联谐振频率的间隔越小。
70年代发展起来的离子刻蚀技术能使晶体谐振器的基波频率接近 500兆赫。但由于外接元件,特别是线圈问题,其泛音频率也只能做到 600兆赫,相对带宽约为0.01%~1%。
由分立式晶体谐振器和分立式电子元件构成的滤波器。图2a的差接桥型晶 体滤波器是其一种。在滤波性能上它和格型滤波器等效,但所用的晶体谐振器数目可减少一半。其阻抗特性及衰减特性如图2b 和c。在f1至f3之间,z1和z2的符号相反,又由于变压器次级两端电压的极性相反,两臂中的电流同号相加,所以f1至f3间为滤波器的通频带。同理,当ff3时,z1和z2同号,两臂电流异号相减;所以f1~f3两侧以外的区域为阻带。z1=z2时,输出为零。分立式晶体 滤波器可实现的中心频率为10千赫到350兆赫,相对带宽为0.01%~10%。
采用集成电路工艺制作的晶体滤波器,有单片的、串联单片的和多片的三种类型。
单片晶体滤波器 由镀在AT切(见石英晶体)石英片上若干对电极形成的耦合谐振器组成。图3为其中最简单的四电极单片晶体滤波器电路结构及其等效电路。输入谐振器随所加信号电压而产生厚度切变振动,晶片因受电极质量负荷的影响,电极区的谐振频率比非电极区的低,使弹性波在两区边界发生反射,从而使绝大部分能量陷落在电极区内,少量泄漏的能量则耦合到与之相邻的谐振器。这样依次相传到输出谐 振器,再变为电信号。适当地设计电极尺寸、谐振器间距和频率镀回率,就可以控制弹性波在晶片中的传播,从而实现滤波功能。
串联单片晶体滤波器 由若干用电容耦合的单片晶体滤波器组成(图4)。其优点是利于调整工作频率和抑制寄生频率。
多片晶体滤波器 由串联的耦合谐振器、并联的单谐振器和电容器组成(图5)。其特点是能在靠近通频带的频率上形成若干衰减峰,有利于抑制干扰和改善滤波性能。
集成式晶体滤波器体积小、可靠性高而且造 价低。但其中心频率只有4.5~350兆赫,相对带宽为0.01%~0.3%,所以在要求中心频率低、通频带宽的场合尚不能取代分立式晶体滤波器。
采用集成工艺在压电基片上镀上若干对电极,如图6(a)所示。每对电极构成一个谐振元件,基片两端的电极还兼有机电换能功能,极间部分起耦合元件的作用,其等效电路如图6(b),这是一个带通滤波器。
单片晶体滤波器采用集成工艺,有体积小、稳定性高、成本低等优点;通常做成带通,主要采用石英晶体作基片,工作频段在5~200MHz,相对带宽约为0.01%~0.3%。由于其工作原理和机械滤波器相同,也称作单片机械滤波器,这种滤波器也可用多块单片组成,以降低工艺要求。
1921年W.G.凯地将晶体谐振器用于各种调谐电路 ,形成了晶体滤波器的雏形。1927年L.艾斯本希德把晶体谐振器用于真正的滤波电路 。1931年W.P.梅森又把它用于格型滤波器。60年代中期,集成式晶体滤波器研制成功,晶体滤波器在小型化方面有了很大发展。石英晶体谐振器是最常用的晶体谐振器之一,它在滤波器中主要用作窄带通滤波器。钽酸锂或铌酸锂晶体谐振器的耦合系数和频率常数较大,适用于制做高频宽带通滤波器。其他压电材料因温度稳定性较差,很少采用。
从电气工程上,所有的元件可以归纳为三类最基本的元件,即电阻,电感和电容.电阻的阻值与交流电的频率无关.电感的阻值(称为感抗)Xl=2πfL,即与交流电的频率成正比.频率越高,感抗越大.电容元件则与电感...
这个必须接合图纸来说明较清楚些,简单地说吧就是利用电容,电感量的不一样,所对不同频率产生的阻抗不一样.阻抗大的被阻挡,阻抗小的被通过.同时也可以利用电容,电感对某个频段产生偕振,使之通过或被阻挡.这就...
模拟的一阶滤波器带外衰减是20db/十倍频,而二阶则是40db/十倍频,阶数越高带外衰减越快。可以粗略地认为阶数越高滤波效果越好,但有时可能需要折中考虑相移,稳定性等因素。
2700kHz宽带石英晶体滤波器的设计制作
采用多节数宽带滤波器电路及不等量参数相同节新的设计方法,使2700kHz石英晶体滤波器晶体滤波器实现带宽要求0.48%、矩形系数小于1.5、通带外衰减大于70dB、远端衰减大于105dB的目的。
以石英晶体谐振器作为主要元件而构成的滤波器就叫做晶体滤波器。
有源滤波器
无源滤波器
晶体滤波器属于无源滤波器
按滤波器对信号频率的作用来分,可以分为以下四种
低通 低于某一规定的频率(截止频率)的信号均可通过,高于该频率的信号均被衰减
高通 高于某一规定的频率(截止频率)的信号均可通过,低于该频率的信号均被衰减
带通 位于两个规定频率(上、下截止频率)之间的信号均可通过,高于上截止频率和低于下截止频率的信号均被衰减
带阻 位于两个规定频率(上、下截止频率)之间的信号均被衰减,高于上截止频率和低于下截止频率的信号均可通过
由于晶体滤波器的主要元件是晶体,而晶体的品质因数特别高,因此晶体滤波器主要具有以下特点
带宽窄 晶体滤波器带宽可以做到相对带宽的千分之几
插入损耗小 普通的晶体滤波器均可达到3~6db
矩形系数小 过渡带可以做的非常陡峭,矩形系数可达2甚至更小到1点几
温度特性好 和晶体的温度特性基本相同
凡是需要将有用的频率信号和无用的频率信号分开并将无用信号抑制下去的地方都可以使用滤波器。例如:
通信、导航等做中频滤波
仪器、仪表、控制中作信号提纯
在实际晶体滤波器的制作中,都用加一个差接变量器的差接桥型滤波器来等效格型滤波器。这样可以使晶体和其它元件的数目减少一半,但需要注意的是串并臂的阻抗要加大一倍。在实际应用中除了匹配阻抗不同(相差1倍)以外,没有什么区别,还为输入输出提供了公共接地线,更便于不平衡电路的使用。
晶体加工工艺和普通的晶体一样,需要特别注意的有以下两点:等效参数的一致性要好一些寄生响应要尽量的做小一点
因此更需要采用能陷公式来确定镀膜返回量或者确定电极尺寸
变量器的带宽要远大于滤波器的带宽,变量器的并联谐振阻抗远大于滤波器的特性阻抗,变量器的电感量尽可能的大,但要保证还能加上一定的外接调谐电容。 如果端接阻抗和滤波器的特性阻抗不一样,可通过改变变量器的初、次级所绕的圈数比来实现。 磁芯的选择 根据滤波器的频率和所要求的体积选择 绕制的要求 差接线圈最好用双线并绕的方法绕制 固定的方式 要求要牢固可靠并且要屏蔽好 印刷电路板设计 节与节之间最好能分隔开 印刷电路板用的敷铜板的绝缘性能要好 装配和调试 装配位置正确,焊接牢靠.
主要技术指标 中心频率 (标称频率) 通带宽度 3db 6db 通带波动 插入损耗 阻带衰减 阻带范围 寄生响应 群延迟 信号通过滤波器后相位对于频率的变化率 从公式中可以看出这个指标和所选的测量孔径(Δω)有关,孔径太大可能漏掉某些点而使测量数据显得小一些。 端接阻抗 既可以是纯电阻,也可以并上电容,这样在调试时就把这个电容包括在内了,以免使用者和制造者因端接阻抗的不同而造成测试结果的差异。
滤波器的设计从最开始的定K式滤波器、m导出滤波器到象参数法设计的滤波器,都是按照设计出的线路的性能去接近对滤波器的要求,一般把这种设计方法叫做分析法设计。
随着计算机性能的发展和提高,可以按照滤波器的要求来计算出滤波线路及其元件数值,这也叫做综合法设计。而且已经有人把各种滤波器的性能要求和满足这种要求的滤波线路及其元件数值制作成表格供设计者查找,设计者只需进行简单的计算即可完成设计。
对于晶体滤波器来说,从2极点到12极点的电路及其元件数值都已经给出。