选择特殊符号
选择搜索类型
请输入搜索
金属韧性可以分为冲击韧性和断裂韧性。
冲击韧性:
许多机械零件和工具,在工作过程中往往受到冲击载荷作用,如冲床的冲头,锻锤的锤杆和破碎机等。材料在冲击载荷作用下抵抗破坏的能力称为冲击韧性,简称韧性。
断裂韧性:
材料抵抗裂纹失稳扩展的性能称为断裂韧性。2100433B
首先对这两个概念明确一下:硬度:材料局部抵抗硬物压入其表面的能力称为硬度.韧性:材料的断裂前吸收能量和进行塑性变形的能力显然这两个概念不是在一个范畴的但两者有着很紧密的联系与韧性相对的是脆性,材料在断...
金属除锈剂可除去锈、污染物质(积碳)、氧化物。经其处理过的金属表面对焊接、电镀、喷漆不会产生影响。除锈後保持金属原有的色泽,对人体无腐蚀性。
通常指以无机物为主体的玻璃、陶瓷、石墨、岩石以及以有机物为主体的木材、塑料、橡胶等一类材料。由晶体或非晶体所组成。无金属光泽。是热和电的不良导体(碳除外)。一般非金属材料的机械性能较差(玻璃钢除外),...
金属软管简介
石化部分: 金属软管可用于化学工业的管道系统、过热蒸汽管、低温管路、液压和气 压设备的高压管道、传输毒爆介质的管道等,所起的作用就是吸收往复运动、吸收热膨胀、 吸收振动、补偿管路安装的偏差。正是由于金属软管的使用,使复杂的管路系统变为简单, 使无法实现的管路系统变为可能,金属软管的应用已经覆盖了工业和家用的许多不同领域, 可以豪不夸张地说只要有管路的地方, 都可以用上金属软管。 但是在金属软管的实际应用中, 也必须按照金属软管自身的特点和规律进行选用, 如果违反这些规则, 金属软管不仅不能发 挥应有的作用, 反而会影响整个管路系统的运行甚至发生重大事故造成不必要的财产和人员 损失。 因此在选用金属软管之前,必须正确了解金属软管的基本知识和特点掌握金属软管使用规 律,这样才能灵活运用于工程实践中。 金属软管主要由三部分组成即波纹管、钢丝网套、 接头。波纹管是金属软管的主体,起着可 挠曲的作用
只有少数工作零件才承受缺口试棒冲击试验中所特有的那种强大的冲击条件。另外,截面尺寸也影响缺口的韧性值。根据这些理由,缺口韧性试验结果,不总是与工作条件有对应关系,而且不能直接用于工程设计。只有在与特定的构件,在特定的工作条件下有对应关系时,缺口的韧性值才对设计有用。例如,许多机器的钢零件,在极冷的条件下成功地转动,并不需要对缺口的韧性值,或产生韧-脆转变的温度,作特殊的考虑。当最大剪应力接近于最大的主拉应力时,如像在中等程度的应变速度和温度条件下做扭转或简单的拉伸试验那样,可以使用转变温度较高的钢种。应力集中和应变率高以及工作温度又低的地方,必须选用转变温度低的钢种。
结构钢的缺口韧性随温度降低而减小。对低温的工程结构而言,钢材低的缺口韧性是造成脆性断裂的重要原因之一。对材料缺口韧性的规定在结构脆断防止和材料选择中将是十分重要的。随着各种液化气体贮存设备(如低温液氮装置、液化气体贮罐)的使用,对低温用钢缺口韧性规定更显得迫切。而且,根据不同结构的使用要求,合理规定缺口韧性也是值得研究的课题。
对材料韧性规定是应该保证在工作应力下不会由结构中最大缺陷处开始发生脆性断裂。各国对材料缺口韧性标准拟订的依据亦略有不同。英、美、西德等国家以防止脆性断裂开始为基础提出了韧性规定;而日本焊接协会对钢板的低温韧性规定提出两种要求:①防止脆性开裂,这是一般结构所常采用的;②防止裂纹扩展,这是特定条件下使用的。国外对钢材缺口韧性规定,早期是按船舶、压力容器等结构相应地制订了标准,有的目前仍在使用。 2100433B
缺口断裂韧性简称为缺口韧性,最常见的有冲击韧性。缺口韧性是材料具有缺口时,塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现。因此,在特定条件下,能量、强度和塑性都可用来表示韧性。断口形貌反映断裂结果,也可用来表示韧性。温度和应变速度都是影响韧性的重要因素,而温度是易于控制的,因而也可用脆性转变温度来表示韧性。现在分述如下:
1)能量——很明显,能量是韧性的参量。不过,要注意是什么缺口韧性试验的能量,是否考虑了韧带面积。例如夏氏V型冲击值是CV,而梅氏冲击值却用aK表示,前者未除以韧带面积,而后者则已经除以韧带面积了。
2)强度——进行缺口拉伸试验时,一般用缺口强度σNF及缺口强度比NSR来表示缺口韧性。NSR明确地表明了缺口导致的强化及脆化作用,σNF则表明了多向应力下断裂的强度。
3)塑性——各类钢材的单向拉伸的抗拉强度,从低强度的30公斤/毫米2到超高强度的210公斤/毫米2,相差约为7倍;而伸长率的变化范围更广,可从0.5%到50%,相差约为100倍。因此,可用多向应力作用下的塑性来表示缺口韧性。因此,缺口试样的伸长率同样可用来反映缺口敏感性。
4)断口形貌——脆性断裂的断口是结晶型,肉眼可以观察到断口上是发亮的颗粒晶面,很少塑性变形;韧性断裂的断口是纤维型,肉眼观察到的是暗灰色丝状断口,有塑性变形。一般可用结晶面积的百分数或纤维面积的百分数(两者之和为100%)来表示缺口韧性。通过断口金相分析(光学的和电子的),既可将宏观力学性能和微观力学过程联系起来,起到桥梁作用,也可提出新的微观参量来表示韧性。
5)温度——采用不同判据确定的脆性转变温度(θ0),是一个重要的韧性参量。
最常用的判据是能量和断口形貌。