选择特殊符号
选择搜索类型
请输入搜索
极坐标测量法是在极坐标系中进行的,极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
用极坐标测量点
正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r, θ)可以任意表示为(r, θ ± n×360°)或(−r, θ ± (2n 1)180°),这里n是任意整数。[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。
使用角度和弧度单位
极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定。航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。2100433B
引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。用极坐标系所进行的测量方法称做极坐标测量法。
这个不太好控制 熟能生巧吧
施工测量有很多方法,有直角坐标法,极坐标法。角度前方交汇法。。不同的情况采用不同方法效果更好。极坐标法用于测设点离控制点近,测设点要和控制点能通视,便于量距离的地方。,根据控制点和测设点的坐标计算出之...
极坐标法是在控制点上测设一个角度和一段距离来确定点的平面位置。
平面问题的极坐标解法
平面问题的极坐标解法——一、用极坐标求解的平面问题 构件特征:圆筒、圆盘、扇形板.半平面体.楔形体、带孔物体。 应力分量:r (r, q), q (r, q), rq = qr(r, q) 应变分量:er , eq , g rq = g qr(r, q) 位...
极坐标法放样在施工测量中的应用
施工放样,传统的方法有很多种,随着全站仪的普及应用,极坐标法更是由其本身具有的灵活性而凸显出自身的优势,因而在施工中被广泛采用。通过对比传统的坐标放样方法所存在的问题,进而说明极坐标法放样在实际施工生产中的应用及优点,最后简要说明施工放样时应该注意的问题。
在极坐标中,x被ρcosθ代替,y被ρsinθ代替。ρ^2=(x^2+y^2)
直角坐标系坐标与极坐标的转化:
例如:(2,π/3)为极坐标,它所对应的直角坐标为(2×cos π/3,2×sin π/3),及 (1,√3);(R,a°或A·π)对应(R·cos a°,R·sin a°)
ρ的值是可以正负的,ρ随θ变化,负号表示反向。
极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
众所周知,希腊人最早使用了角度和弧度的概念。天文学家喜帕恰斯(Hipparchus 190-120 BC)制成了一张求各角所对弦的弦长函数的表格。并且,曾有人引用了他的极坐标系来确定恒星位置。在螺线方面,阿基米德描述了他的著名的螺线,一个半径随角度变化的方程。希腊人作出了贡献,尽管最终并没有建立整个坐标系统。
关于是谁首次将极坐标系应用为一个正式的坐标系统,流传着有多种观点。关于这一问题的较详尽历史,哈佛大学教授朱利安·卢瓦尔·科利奇的《极坐标系起源》作了阐述。格雷瓜·德·圣-万桑特 和博纳文图拉·卡瓦列里,被认为在几乎同时、并独立地各自引入了极坐标系这一概念。圣-万桑特在1625年的私人文稿中进行了论述并发表于1647年,而卡瓦列里在1635进行了发表,而后又于1653年进行了更正。卡瓦列里首次利用极坐标系来解决一个关于阿基米德螺线内的面积问题。布莱士·帕斯卡随后使用极坐标系来计算抛物线的长度。
在1671年写成,1736年出版的《流数术和无穷级数》(en:Method of Fluxions)一书中,艾萨克·牛顿第一个将极坐标系应用于表示平面上的任何一点。牛顿在书中验证了极坐标和其他九种坐标系的转换关系。在1691年出版的《博学通报》(Acta eruditorum)一书中雅各布·伯努利正式使用定点和从定点引出的一条射线,定点称为极点,射线称为极轴。平面内任何一点的坐标都通过该点与定点的距离和与极轴的夹角来表示。伯努利通过极坐标系对曲线的曲率半径进行了研究。
实际上应用“极坐标”en:Polar coordinate system这个术语的是由格雷古廖·丰塔纳开始的,并且被18世纪的意大利数学家所使用。该术语是由乔治·皮科克在1816年翻译拉克鲁瓦克斯的《微分学与积分学》(Differential and Integral Calculus)一书时,被翻译为英语的。
阿勒克西斯·谢罗特和莱昂哈德·欧拉被认为是将平面极坐标系扩展到三维空间的数学家。
点(3,60°) 和 点(4,210°)正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。(−3,240°) 和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。通常来说,点(r,θ)可以任意表示为(r,θ ± n×360°)或(−r,θ ± (2n + 1)180°),这里n是任意整数。[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。
极坐标系中的角度通常表示为角度或者弧度,使用公式2π rad = 360°.具体使用哪一种方式,基本都是由使用场合而定。航海(en:Navigation)方面经常使用角度来进行测量,而物理学的某些领域大量使用到了半径和圆周的比来作运算,所以物理方面更倾向使用弧度。
极坐标系中的两个坐标 r 和 θ 可以由下面的公式转换为直角坐标系下的坐标值
x = r*cos(θ),
y = r*sin(θ),
由上述二公式,可得到从直角坐标系中x 和 y 两坐标如何计算出极坐标下的坐标
r = sqrt(x^2 + y^2),
θ= arctan y/x
在 x = 0的情况下:若 y 为正数 θ = 90° (π/2 radians); 若 y 为负,则 θ = 270° (3π/2 radians).
G112 极坐标插补模式(进行极坐标插补)
G113 取消极坐标插补模式(不进行极坐标插补)
对于刚接通电源和复位(置O或切换)时,机床取消极坐标插补,即处于G113模式。在进行极坐标补偿前,要预先设置直线轴及回转轴的初参量(参数为291、292) 。执行G112指令,转换为极坐标插补模式,将工件坐标系的原点设为极坐标工作的原点,极坐标插补在极坐标平面上进行。极坐标插补平面即第一平面轴(直线轴)和第二平面轴(假想和第一平面轴正交的轴—虚轴)确定的平面。
极坐标插补模式中的指令值就是极坐标插补平面仁的正交坐标系值,平面第二轴(假想的虚轴)指令的地址使用回转轴(参数292)的地址。指令值的单位和平面轴的单位(mm或inch)相同在极坐标插补模式中,使用G01、G03和G03指令时,绝对坐标或相对坐标均可。另外,对于G112指令也可以对刀尖半径R进行补偿,刀尖半径R补偿的路径为极坐标插补进行的路径。在G41、G42模式下不能直接切换到G112、G113模式,但在G40模式中可以进行极坐标G112、G113 的转换。根据F确定(F单位mm/min或inch/min)的极坐标插补平面上的进给速度,即刀具和工件的相对速度,G112在虚轴的坐标值变为0(即执行G112的位置的角度为0度)时开始进行极坐标插补。
第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线。书中创建之一,是引进新的坐标系。17甚至18世纪的人,一般只用一根坐标轴(x轴),其y值是沿着与x轴成直角或斜角的方向画出的。牛顿所引进的坐标之一,是用一个固定点和通过此点的一条直线作标准,例如我们现在的极坐标系。牛顿还引进了双极坐标,其中每点的位置决定于它到两个固定点的距离。由于牛顿的这个工作直到1736年才为人们所发现,而瑞士数学家J.贝努利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。他还给出了从直角坐标到极坐标的变换公式。确切地讲,J.赫尔曼把cosθ,sinθ当作变量来使用,而且用n和m来表示cosθ和sinθ。欧拉扩充了极坐标的使用范围,而且明确地使用三角函数的记号;欧拉那个时候的极坐标系实际上就是现代的极坐标系。
有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用。