选择特殊符号
选择搜索类型
请输入搜索
目录
译者序
原书序
前言
致谢
本书所用的变量和缩略语
本书运算中的数字和前缀
第1章环路控制基础
11开环系统
111扰动
12控制的必要性——闭环系统
13时间常数的概念
131时间常数的应用
132比例环节
133微分环节
134积分环节
135比例积分微分环节
14反馈控制系统的性能
141暂态或稳态
142阶跃信号
143正弦信号
144伯德图
15传递函数
151拉普拉斯变换
152激励和响应信号
153一个简单的范例
154组合传递函数的伯德图
16总结
精选参考书目
第2章传递函数
21传递函数的表示
211正确书写传递函数
2120dB穿越极点
22根的求解
221观察法找极点和零点
222极点、零点和时间常数
23动态响应和根
231根的变化
24s平面和动态响应
241复平面上的根轨迹
25右半平面的零点
251一个两步转换过程
252电感电流斜率的限制
253使用平均模型来显示RHP零点效应
254Boost变换器的右半平面零点
26结论
参考文献
附录2A确定桥式输入阻抗
附录2B使用Mathcad绘制埃文斯轨迹
附录2C亥维赛展开公式
附录2D使用SPICE画出右半平面零点
第3章控制系统的稳定性判据
31建立一个振荡器
311工作原理
32稳定性判据
321增益裕度和条件稳定
322最小和非最小相位系统
323奈奎斯特图
324从奈奎斯特图中提取基本信息
325模值裕度
33动态(暂态)响应、品质因数和相位裕度
331二阶RLC电路
332二阶系统的瞬态响应
333相位裕度和品质因数
334开环系统相位裕度测量
335开关变换器的相位裕度
336变换器的控制延时
337拉普拉斯域中的延时
338延时裕度与相位裕度
34选取穿越频率
341简化的Buck电路
342闭环下的输出阻抗
343穿越频率处的闭环输出阻抗
344缩放参考值以获得所需要的输出
345进一步提高穿越频率
35总结
参考文献
第4章补偿
41PID 补偿
411拉普拉斯域的PID表达式
412PID补偿器的实际实现
413PI补偿器的实际实现
414PID在Buck变换器中的应用
415具有PID补偿的Buck变换器瞬态响应
416设定值固定:调节器
417具有谐振峰的输出阻抗响应曲线
42基于零极点配置补偿变换器
421简易参数设计步骤
422被控对象传递函数
423积分环节消除静态误差
424积分调节器:1型补偿器
425穿越频率处相位补偿
426配置极点和零点进行相位补偿
427用一对零/极点实现90°相位提升
428用一对零/极点调整中频段增益:2型补偿器
4292型补偿器的设计实例
4210使用双重零/极点对实现180°的相位提升
4211使用双重零/极点调整中频段增益:3型补偿器
42123型补偿器的设计实例
4213选择合适的补偿器类型
4214用于Buck变换器的3型补偿器
43输出阻抗整形
431使输出阻抗呈阻性
44结论
参考文献
附录4A利用快速分析技术得到Buck变换器的输出阻抗
附录4B根据伯德图的群延时计算品质因数
附录4C利用仿真或者数学求解器来获得相位
附录4D开环增益和原点处极点对基于运算放大器的传递函数的影响
附录4E补偿器结构小结
第5章基于运算放大器的补偿器
511型补偿器(原点极点补偿)
511设计实例
522型补偿器:一个原点处极点,以及一个零极点对
521设计实例
532a型补偿器:原点处极点和一个零点
531设计实例
542b型补偿器:静态增益和一个极点
541设计实例
552型补偿器:基于光电耦合器隔离的结构形式
551光电耦合器与运算放大器直接连接,光电耦合器采用共发射极接法
552设计实例
553光电耦合器与运算放大器直接连接,光电耦合器采用共集电极接法
554光电耦合器与运算放大器直接连接,共发射极接法和UC384X连接
555光电耦合器与运算放大器采用有快速通道的下拉接法
556设计实例
557光电耦合器与运算放大器采用有快速通道的下拉接法,共发射极接法
和UC384X
558光电耦合器与运算放大器采用无快速通道的下拉接法
559设计实例
5510光电耦合器与运算放大器在CCCV双环控制中的应用
5511设计实例
562型补偿器:极点和零点重合,简化成隔离型1型补偿器
561设计实例
572型补偿器:略有不同的结构形式
583型补偿器:原点处极点和两个零/极点对
581设计实例
593型补偿器:基于光电耦合器隔离的结构形式
591光电耦合器与运算放大器直接连接,光电耦合器采用共集电极接法
592设计实例
593光电耦合器与运算直接连接,光电耦合器采用共发射极接法
594光电耦合器与运算放大器直接连接,共发射极接法和UC384X连接
595光电耦合器与运算放大器采用有快速通道的下拉接法
596设计实例
597光电耦合器与运算放大器采用无快速通道的下拉接法
598设计实例
510结论
参考文献
附录5A图片汇总
附录5B使用k因子自动计算元件参数
附录5C光电耦合器
第6章基于跨导型运算放大器的补偿器
611型补偿器:原点处极点
611设计实例
622型补偿器:原点处极点与一个零极点对
621设计实例
63光电耦合器与OTA:一种缓冲的连接方式
631设计实例
643型补偿器:原点处极点与两个零极点对
641设计实例
65结论
附录6A图片汇总
第7章基于TL431的补偿器
71集成内部基准的TL431工作原理
711参考电压
712偏置电流
72TL431的偏置对增益的影响
73另一种TL431的偏置方式
74TL431的偏置:取值限制
75快速通道
76禁用快速通道
771型补偿:一个原点处极点,共发射极连接
771设计实例
781型补偿:共集电极配置
792型补偿:一个原点处的极点以及一个零/极点对
791设计实例
7102型补偿器:共发射极结构与UC384X配合
7112型补偿器:共集电极结构与UC384X配合
7122型补偿器:禁用快速通道
7121设计实例
7133型补偿器:原点处极点和两个零/极点对
7131设计实例
7143型补偿器:原点处极点和两个零/极点对,无快速通道
7141设计实例
715交流小信号响应的测试
716基于稳压管的隔离型补偿器
7161设计实例
717基于稳压管的非隔离型补偿器
718基于稳压管的非隔离型补偿器:低成本实现方法
719总结
参考文献
附录7A图片汇总
附录7B第二级LC滤波器
第8章基于分流调节器的补偿器
812型补偿:一个原点处极点加一个零/极点对
811设计实例
823型补偿:一个原点处极点加两个零/极点对
821设计实例
833型补偿:一个原点处极点加两个零点/极点对——无快速通道
831设计实例
84基于稳压管的隔离型补偿器
841设计实例
85结论
参考文献
附录8A图片汇总
第9章系统测量与设计实例
91测量控制系统的传递函数
911有偏置点损耗的开环方法
912无偏置点损耗的功率级传递函数
913系统仅在交流输入下处于开环状态
914注入点处的电压变化
915注入点处的阻抗
916缓冲
92设计实例1:正激直流直流变换器
921参数变迁
922电气原理图
923提取功率电路传递函数的交流响应
924变换器的补偿器设计
93设计实例2:线性稳压器
931获取功率电路的传递函数
932穿越频率的选择和补偿器的设计
933瞬态响应测量
94设计实例3:CCM电压模式升压变换器
941功率电路传递函数
942变换器的补偿器设计
943绘制环路增益的伯德图
95设计实例4:原边调节的反激式变换器
951传递函数推导
952验证等式
953稳定变换器
96设计实例5:输入滤波器补偿
961负增量阻抗(负输入阻抗)
962建立振荡器
963振荡抑制
97结论
参考文献
后记2100433B
《开关电源控制环路设计》共分九章,系统阐述了开关电源的控制环路设计和稳定性分析。第1~3章介绍了环路控制的基础知识,包括传递函数、零极点、稳定性判据、穿越频率、相位裕度、增益裕度以及动态性能等;第4章介绍了多种补偿环节的设计方法;第5~7章分别介绍了基于运放、跨导型运放以及TL431的补偿电路设计方法,将理论知识与实际应用密切关联;第8章介绍了基于分流调节器的补偿器设计;第9章介绍了传递函数、补偿环节与控制环路伯德图的测试原理和方法。本书将电源环路控制的知识点进行了系统的汇总和归纳,实用性强,是一本非常的电源控制环路设计的著作。
《开关电源控制环路设计》适合电源工程师、初步具备电力电子技术或者开关电源基础的读者,可以较为系统地了解开关电源控制环路设计的理论知识、分析方法、工程实践设计以及测试分析等,在工程实践的基础上,大大提高理论分析水平和设计能力。《开关电源控制环路设计》也可作为电力电子与电力传动相关学科研究生的教学参考用书。
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(...
调制方式:PWM和PFM,即脉冲宽度调制和脉冲频率调制,其中以PWM为主; 控制方式:电压控制方式和电流控制方式 脉冲宽度调制式,简称PWM,即脉宽调制。其特点式开关周期为恒定值,通过调节脉冲宽度来改...
电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、...
开关电源控制模式分析
开关电源高频化、模块化、数字化的实现,标志着开关电源控制技术的成熟,本文分析了开关电源控制模式,在总结了开关电源发展历程的基础上分析了数字化控制及电流型控制模式的优点。
BDCM调速开关电源控制信号的设计与实施
BDCM调速开关电源控制信号的设计与实施
《一种原边反馈开关电源控制芯片》的目的在于提供一种原边反馈开关电源控制芯片,其通过选择合适的电压反馈取样点以及通过选择合适的电流反馈取样点来降低原边反馈开关电源控制芯片的耐压等级,从而降低原边反馈开关电源控制芯片的面积和生产成本,并提升应用的灵活性,同时通过前述的技术措施来实现原边反馈开关电源控制芯片外引脚的减少,以简化外部配套电路,提高应用可靠性以及降低应用成本。
《一种原边反馈开关电源控制芯片》包括电压控制单元(101)、RS触发器(102)、斩波器单元(103)、驱动单元(104)、电流控制单元(105),以及VDD、GND、OUT三个引脚,所述斩波器单元(103)经驱动单元(104)放大后由OUT引脚输出以驱动外部开关管,所述电压控制单元(101)和电流控制单元(105)分别联接到RS触发器(102)的S端和R端,以通过RS触发器(102)控制斩波器单元(103),其特征在于选择VDD引脚作为反馈电压采集点,选择OUT引脚作为原边电流信号采集点,还包括第一电压比较器(107)、第二电压比较器(108),分别将VDD引脚的电压信号和OUT引脚的电压信号接入到第一电压比较器(107)和第二电压比较器(108)的输入端,并使之与标准电压信号进行比较后分别输出到电压控制单元(101)和电流控制单元(105)。
《一种原边反馈开关电源控制芯片》的这种原边反馈开关电源控制芯片,使用时与外部电路一起构成原边反馈开关电源,其中外部电路包括变压器(3)、开关三极管G以及整流滤波单元(2),所述变压器(3)包括原边绕组Np、辅助绕组Na以及次级绕组Ns,所述开关三极管G的发射极通过电阻R3接地,集电极接至变压器(3)的原边绕组Np的下端,基极与原边反馈开关电源控制芯片的OUT引脚联接,VDD引脚与外部整流滤波单元(2)的输出侧、原边绕组Np的上端并联接,且通过反接的二极管D1联接辅助绕组Na的上端,辅助绕组Na的下端和GND引脚接地。次级绕组Ns则通过二极管D2整流和电容C1滤波后输出到负载。
在前述的应用系统中,根据变压器原理我们有(Vdd Vz)/(Vo Vz)=NA/NS,其中Vdd为VDD引脚位置的电压值,Vz为二极管的结电压,Vo为次级绕组Ns经二极管D2整流、电容C2滤波后的输出电压值。因此VDD引脚位置的电压也间接反映了次级绕组Ns经二极管D2整流,电容C2滤波后的输出电压Vo的大小,所以VDD引脚可以作为输出电压Vo的反馈信号采集点。将VDD引脚直接作为了反馈信号采集点,为此VDD引脚位置的电压值Vdd会被稳定在设定值附近,一般等于整流滤波单元(2)的输出电压值,不会随输出电压Vo和负载等外部参数而有太大的变化。在2012年3月前技术中,VDD引脚位置的电压值Vdd在5伏时,考虑输出电压Vo和负载等外部参数变化的因素,芯片仍要按远高于5伏的耐压值来设计,而《一种原边反馈开关电源控制芯片》不需要,在整流滤波单元(2)的输出电压值为5伏时,可以采用标准的5伏低压CMOS工艺,从而降低芯片的面积和生产成本。
在《一种原边反馈开关电源控制芯片》中,OUT引脚为芯片的驱动单元(104)的输出引脚,用于驱动外部的开关三极管G,同时在该发明中,OUT引脚还复用为原边绕组Np电流侦测引脚,在开关三极管G导通过程中,如果流经原边绕组Np的电流增加,电阻R3上压降Vcs亦增加,OUT引脚的电压也随之上升,OUT引脚上的电压Vout=Vbe Vcs,Vbe为功率三极管G的基极与发射极间电压,Vcs为原边绕组Np的电流流经电阻R3两端的所产生压降,由于Vbe是一个相对固定的值,因此OUT引脚上的电压Vout值的变化,直接反映了Vcs值的变化,即OUT引脚上的电压Vout可作为原边绕组Np电流信号采集点。在发明中,所述OUT引脚上的电压信号最好通过一过滤波单元(109)接至第二电压比较单元(108)的输入端,以避免杂波干扰。
选择OUT引脚作为原边电流信号采集点的积极效果在于这样使《一种原边反馈开关电源控制芯片》的原边反馈开关电源控制芯片在应用时具有极大的灵活性,由其构建的开关电源的功率在许可的范围内仅取决于开关三极管G的功率,与驱动价格昂贵的MOS管相比,显然驱动普通大功率三极管有成本上的优势,这对开关电源的低成本应用极为重要。
另外,由于《一种原边反馈开关电源控制芯片》的原边反馈开关电源控制芯片只有VDD、GND、OUT三个引脚,这也相应带来了外部电路的简单化,对降低开关电源的成本和可靠性显然有着积极的效果。
所述电压控制单元(101)可以是一个恒压控制单元,也可以是一个恒流控制单元,其具体的电路在CN102237812A所公开内容中以及以AP3708原边反馈开关电源控制芯片为代表的电路中均有充分的公开,在此不作详述。所述电流控制单元(105)主要根据采集的电流信号将原边绕组Np的电流值箝位在极限电流值上,其构成如电压控制单元(101)一样,为众多的2012年3月前技术所公开,包括CN102237812A以及以AP3708原边反馈开关电源控制芯片为代表的电路中均有充分的公开。
1内环路应设置在老城区城市中心区的外围;
2外环路宜设置在城市用地的边界内1~2km处,当放射的干路与外环路相交时,应规划好交叉口上的左转交通;
3大城市的外环路应是汽车专用道路,其他车辆应在环路外的道路上行驶;
4环路设置,应根据城市地形、交通的流量流向确定,可采用半环或全环;
5环路等级不宜低于主干路。
第1章 开关电源控制技术
1.1 PWM控制技术
1.1.1 PWM控制技术基础
1.1.2 PWM调制方式
1.1.3 SPWM调制方法对比分析
1.2 开关电源控制方式
1.2.1 开关电源基本控制电路
1.2.2 电流检测电路
1.3 PWM反馈控制模式
1.4 电流型控制模式中的斜坡补偿
1.4.1 电流型控制模式中的问题分析
1.4.2 准固定频率滞环PWM电流控制方法
第2章 软开关控制技术
2.1 谐振技术
2.1.1 谐振电路
2.1.2 电路频率特性
2.2 软开关技术
2.2.1 谐振电器
2.2.2 软开关的基本概念
2.2.3 软开半电路的分类
2.2.4 典型软开关电路的工作原理
2.3 无源软开关技术
2.3.1 谐振电路的工作过程
2.3.2 应用问题分析
2.4 无损吸收网络
2.4.1 无损电压吸收网络
2.4.2 无损电流吸收网络
2.5 无源无损缓冲器
2.5.1 C-2D和C-L-2D型无源无损缓冲电路
2.5.2 无源无损缓冲电路拓扑结构及应用电路
2.6 典型应用电路
2.6.1 复位型无损电压钳位变换器
2.6.2 无源软开关变换器
2.6.3 无损缓冲双管串联单正激电路
第3章 开关电源集成控制器
3.1 DPA426集成控制器
3.2 EL7558BC集成控制器
3.3 FA5310/FA5311集成控制器
3.4 HIP6004E集成控制器
3.5 ECE1QS01系列集成控制器
3.6 组合式ICE2A控制器
3.7 L5973AD及其应用
3.8 LM系列PWM控制器
3.8.1 LM1572电流模式PWM控制器
3.8.2 LM2575电流模式PWM控制器
3.8.3 LM2576ADJ降压式开关电压调整器
3.8.4 LM2678电压变换器
3.9 M51995A集成控制器
3.10 MAX系列控制器
3.10.1 MAX1642/MAX1643控制器
3.10.2 MAX5003控制器
3.10.3 MAX668控制器
3.10.4 MAX629控制器
3.10.5 MAX1759控制器
3.10.6 MAX712控制器
3.10.7 MAX2003A控制器
3.11 MC44608控制器
3.12 NCP系列控制器
3.13 S系列控制器
3.14 T系列控制器
3.15 UC系列控制器
第4章 DC/DC变换器
第5章 DC/AC变换器
第6章 开关电源均流技术
参考文献2100433B