选择特殊符号
选择搜索类型
请输入搜索
开普勒太空望远镜(Kepler Mission)是美国国家航空航天局设计来发现环绕着其他恒星之类地行星的太空望远镜。使用NASA发展的太空光度计,预计将花3.5年的时间,在绕行太阳的轨道上,观测10万颗恒星的光度,检测是否有行星凌星的现象(以凌日的方法检测行星)。为了尊崇德国天文学家约翰内斯·开普勒,这个任务被称为开普勒太空望远镜。开普勒是NASA低成本的发现计划聚焦在科学上的任务。NASA的艾美斯研究中心是这个任务的主管机关,提供主要的研究人员并负责地面系统的开发、任务的执行和科学资料的分析。
在经过数个月的努力后,美国航天局2013年8月15日宣布放弃修复"开普勒"太空望远镜。"开普勒"由此结束搜寻太阳系外类地行星的主要任务,但它仍可能被用于其他科研工作。
2017年12月14日,NASA宣布使用凯普勒太空望远镜在遥远的一个恒星系统,确定了距离地球 2545 光年远的开普勒 90 星系中的两颗新发现的行星——开普勒 80g 和开普勒 90i,这是人类发现的首个和我们太阳系一样的具有 8 颗行星的星系。
开普勒不在环绕地球的轨道上,而是在尾随地球的太阳轨道,所以不会被地球遮蔽而能持续的观测,光度计也不会受到来自地球的漫射光线影响。这样的轨道避免了重力摄动和在地球的轨道上固有扭矩,可以有一个更加稳定的观测平台。光度计指向天鹅座和天琴座所在的领域,远离了黄道平面,所以在绕行太阳的轨道上,阳光也不会渗漏入光度计内。天鹅座也不会被古柏带或小行星带的天体遮蔽到,所以在观测上是一个很好的选择。
这样选择的另一个好处是开普勒所指向的方向是太阳系绕着银河系运动的中心,因此开普勒所观察到的恒星与银河中心的距离大致上与太阳系是相同的,并且也都靠近银河的盘面。这是个很重要的事实,如果星系也有适居带的位置,就如同建议的地球殊异假说。
开普勒探测器计划对银河系内10万多颗恒星进行探测,希望搜寻到能够支持生命体存在的类地行星。
一、测定在多样性光谱型恒星适宜居住区域内部或周围的陆地行星和大型行星数量
这一行星测定数据源自行星的数量和大小,以及被监控恒星的数量和光谱类型。即使开 普勒探测器发现这一数据为零,也具有很重要的科学意义,毕竟证实了更多数目的恒星体系经过了搜索勘测。排除了可能出现适宜居住行星的可能性。
二、测定不同体积大小行星的分布,以及行星的半长轴(semimajor axes)
测定不同体积大小行星的分布状况主要源自观测该行星微弱光亮的递减度和所在恒星体系的特征。
基于开普勒第三定律,通过测定恒星的质量和周期年龄特征,可进一步确定行星半长轴相应的数据资料。据悉,开普勒第三定律的内容是:行星距离太阳越远,行星的受力越弱,行星的加速度减小,故运行得越慢,行星的公转周期就越长。行星半长轴还可通过地面分光镜和恒星模型的观测结果得出,测定行星半长轴出现的不确定因素是与所在恒星体系中中心恒星质量有关。
三、评估多恒星体系中行星的数量和行星的轨道分布状况
这项评估可对比一对多恒星体系中发现行星系统的数量来实现,如果该多恒星体系是紧密地结合在一起,或者是可通过高角分辨率观测的较广阔空间体系,使用地面上的分光镜仪器便可观测这样的多恒星体系。
四、测定短周期巨行星的密度、质量、体积大小、反照率、半长轴
短周期巨行星可通过它们的反射光变化来探测发现,同样,它们的半长轴测定也是源自于使用开普勒第三定律测定恒星的质量和周期年龄特征。
凌日行星(planetary transit)的数量占已测定一定大小行星数量的10%。在太阳系内,凌日是内行星经过太阳与地球之间,对太阳面产生部分遮挡的一种天文现象。如果这两颗内行星的一颗恰好从地球与太阳之间经过,地球上的观察者就会看到有一个黑点从太阳圆面通过,需时大约为一个多小时,人们把这种现象称为凌日。对于太阳系外的恒星而言,凌日则是指该恒星的行星经过该恒星和地球的连线之间,对地球观察者产生部分遮掩恒星的天文现象。
按照探测计划,开普勒探测器在探测任务的最初几个月内将发现一定数量的短周期巨行星,并测定这些行星的大小、半长轴,通过反射光调制振幅的测定来确定其反照率,行星的密度由开普勒探测器的分光镜和该行星出现凌日现象时进行测定,该方法曾在测定HD209458b行星密度时使用过。
五、使用互补技术,测量每个光度角度识别发现的行星系统中额外的行星数量
使用空间干涉仪(SIM)和地面多普勒分光镜来搜寻未出现凌日现象的超大质量行星,进一步提供每个已探测行星系统的详细资料。
六、探测具有行星系统的恒星的性质特征
科学家使用地面观测仪器探测每个恒星的光谱类型、发光度等级和金属性,此外,还有恒星的旋转比率、表面亮度多相性,从光度计数据直接获得的恒星活动性。使用开普勒探测器震观测仪(asteroseismology)等仪器测定恒星的年龄和质量。
未来的探测任务
基于开普勒探测器的勘测分析结果,未来空间干涉仪(SIM)和"类地行星搜索者号"(TPF)探测器将进行更深入的类地行星的探索发现,据悉,"类地行星搜索者号"预定2011年升空。
在开普勒探测器的基础上,未来的探测任务还需要具备以下勘测条件:在日后的行星搜索项目中识别确定主恒星的常用恒星特征;确定需要进行搜寻的空间体积;向空间干涉仪(SIM)提供具有陆生行星体系的勘测目标列表。
1、太空分光计:0.95米孔径;
2、主镜:直径1.4米,85%的中空结构;
3、CCD探测镜:9500万像素(42个2200x1024象素的电子耦合器);
4、带通:峰值半高宽为430-890毫微米;
5、动态探测范围:9-16个星等(magnitudestars);
6、优质制导传感器:4个电子耦合器(CCDs)定位在科学焦点平面上;
7、科学数据存储时间:大于60天;
8、上行X波段:7.8125bps-2kbps;
9、下行X波段:10bps-16kbps;
10、下行Ka波段:最大值为4.33125Mbps;
11、除一次性装置之外,所有机械装置表面都有覆盖层,主镜有三个聚焦装置;
12、飞行组件和装配仪器的质量:1071公斤(预计最大值);
13、飞行组件和装配仪器的功率:771瓦(预计最大值)
真的太空望远镜是一种大口径釆光,然后通后光学仪器成像,整套设备有半台汽车大小,加上生产那些配件的部伤不是流水线生产,所以成本贵
光学显微镜 optical microscope 利用光学原理把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 简史 早在公元前 1世纪,人们就已发现通过球形透明物体去观察微小...
绝对是,首先观景和观鸟,显然是用看更舒适,便携性也更好,单筒用的时间长了眼睛容易疲劳,而且没有视觉的成像叠加作用也会影响到画面的立体感(你在电捂住一只眼看空间变化幅度较大的画面就能体会到了)。 而且...
开普勒太空望远镜(KEPLER)又译为开普勒空间望远镜,是世界首个用于探测太阳系外类地行星的飞行器,于美国东部时间2009年3月6日22时49分57秒465毫秒(北京时间7日11时49分57秒465毫秒),从佛罗里达州卡纳维拉尔角空军基地17-B发射台发射升空,它将是美国宇航局发射的首颗探测类地行星的探测器。在为期至少3年半的任务期内,"开普勒"太空望远镜将对天鹅座和天琴座中大约10万个恒星系统展开观测,以寻找类地行星和生命存在的迹象。美国航天局公布的资料显示,"开普勒"太空望远镜携带的光度计装备有直径为95厘米的透镜,它将通过观测行星的"凌日"现象搜寻太阳系外类地行星。
这次发射是"德尔塔"系列运载火箭第339次发射。
开普勒太空望远镜由外面位于科罗拉多州波尔德市的大气和太空物理实验室(LASP)负责运作。太阳阵列在每年位于分至点时会转动至正对着太阳的方向,这些转动将用来优化照射到阵列上的阳光,并使热辐射器保持指向深太空的方向。同时,LASP和贝尔太空科技公司(该公司负责建造太空船和仪器)从位于科罗拉多州波尔德市的科罗拉多大学的控制中心进行操作。LASP进行基本的任务计划和科学资料最初的收集和分发工作。
NASA每星期两次透过X-波段的通信线路与太空船联系,下达指令和进行状态更新,每个月一次使用Ka带下载科学性的数据,传输的最大速率是4.33Mb/s。开普勒太空船在船上会自己进行部分的资料分析,只在必要时才会传送科学性的数据,以保持带宽。
在任务期间由LASP收集的遥测科学资料会被送至位于马里兰州巴尔的摩约翰霍普金斯大学校园内的太空望远镜技术学院开普勒数据管理中心(DMC)。这些遥测科学资料会被解码并且处理成未校正的FITS-并由DMC格式化成科学数据产品,然后通过在NASA的艾美斯研究中心的科学操作中心(SOC)进行校正和最后的处理。SOC将送回校正和处理好的数据产品和科学结果给DMC做长期的归档和经由在STScl的多任务档案(MAST)分送给世界各地的天文学家。
2013年5月,在搜寻系外行星方面功能最为强大的美国宇航局开普勒空间望远镜发生重大故障,卫星基本停止了正常的观测工作,如果宇航局的工程师无法及时对其进行修复,那么这项耗资6亿美元的空间项目将有可能提前夭折。
2013年8月19日消息,据美国宇航局网站报道,在经过连续数月的分析和测试之后,美国宇航局开普勒望远镜项目团队日前正式宣布放弃让这台望远镜重新恢复到完全工作状态的努力,转而考虑在目前的不利条件下,这台望远镜设备还能承担何种形式的科学任务。
开普勒望远镜已经于2012年11月份完成其主要科学使命,并紧接着开始了其原计划为期4年的计划延长期。其主要的科学任务是搜寻太阳系之外围绕遥远恒星运行的系外行星体。然而由于已经无法凑齐3个反应轮维持望远镜的正常工作状态,项目组决定一边对此前已经收集的大量数据进行分析,一边由工程师团队尝试对故障反应轮进行修复,同时积极考虑如果维修失败,这台先进的空间望远镜是否还仍然可以承担一些其它类型的科学任务。
2013年5月15日,开普勒空间望远镜由于反应轮故障,无法设定望远镜方向,因此被迫停止其搜寻系外行星任务。2013年8月18日,美国国家航空航天局表示无法修复,正式结束其主要科学任务。
1、开普勒望远镜是世界是第一个真正能发现类地行星的太空任务,它将发现宜居住区围绕像我们太阳似的恒星运转的行星。水是生命之本,此宜居住区得是恒星周围适合于水存在的一片温度适宜的区域,在这种温度下的行星表面可能会有水池存在。
2、在开普勒望远镜三年半多的任务结束之前,它将让我们更好地了解其它类地行星在我们银河系到底是多还是少。这将是回答一个长久问题的关键一步,此问题就是:我们是宇宙中惟一的么?
3、开普勒望远镜通过发现恒星亮度周期性变暗来探测太阳系外行星。 当我们从地球上某个位置来观察天空时,如果有行星经过其母恒星的前面,就能发现此行星会导致其母恒星亮度稍微变暗。开普勒望远镜更能洞悉这一情况。
4、开普勒望远具有太空最大的照相机,有一个95兆像素的电荷偶合器(CCD)阵列,这就像我们日常使用的数码相机中的CCD一样。
5、开普勒望远镜如此强大,以至于它从太空观察地球时,能发现居住在小镇上的人在夜里关掉他家的门廊灯。
6、开普勒太空望远镜定位在地-日系统的第二拉格朗日点,围绕太阳运转,所以可以全时段检测目标天区。
7、观测目标远离黄道面,可避免太阳系天体掩食的干扰。
开普勒不在环绕地球的轨道上,而是在尾随地球的太阳轨道上,所以不会被地球遮蔽而能持续的观测,光度计也不会受到来自地球的漫射光线影响。这样的轨道避免了重力摄动和在地球的轨道上固有扭矩,可以有一个更加稳定的观测平台。光度计指向天鹅座和天琴座所在的领域,远离了黄道平面,所以在绕行太阳的轨道上,阳光也不会渗漏入光度计内。天鹅座也不会被古柏带或小行星带的天 体遮蔽到,所以在观测上是一个很好的选择。
这样选择的另一个好处是开普勒所指向的方向是太阳系绕着银河系运动的中心,因此开普勒所观察到的恒星与银河中心的距离大致上与太阳系是相同的,并且也都靠近银河的盘面。这是个很重要的事实,如果星系也有适居带的位置,就如同建议的地球殊异假说。
估计太空船的质量是1039公斤,口径是0.95米,主镜(在地球轨道之外最大的镜片)1.4米,视野(FOV)有105 deg2(大约12度的直径),大约是胳膊伸直时一个拳头遮蔽的视野。光度计有一个柔软的焦点提供良好的光度测量,而不是清晰的图像。结合的光度差异精确性(CDPP,combined differential photometric precision),对一颗m(V)=12类似太阳的恒星,进行6.5小时的影像综合是20ppm,已包括恒星本身预期可能的 10ppm光度变化。而一颗类似地球的行星凌星造成的光度变化是84ppm,而且轨道经过恒星中心时至少将持续13小时。焦平面由42个1024 X 2200的CCD组成,每个画素的大小是27微米,是发射至太空中最大的照相机。这个阵列由一条连结到外面的热导管来冷却。CCD每3秒中读出一次资料,并且可以暂留15分钟,只有对应到有兴趣目标恒星画素的资料才会被保存,并透过遥测传回到地面。这个任务在生命周期中,包括持3.5年的运作,估计要花费6亿美金。
据美国宇航局网站最近报道,美国宇航局在搜寻系外行星方面正迎来两个里程碑式的事件。首先持续时间长达3年半的开普勒太空望远镜圆满地完成了其主任务期;另一方面,这一功勋卓著的太空望远镜设备即将开始其延长任务期,该延长任务期将持续4年。
1、太空分光计:0.95米孔径;
2、主镜:直径1.4米,85%的中空结构;
3、CCD探测镜:9500万像素(42个2200x1024象素的电子耦合器);
4、带通:峰值半高宽为430-890毫微米;
5、动态探测范围:9-16个星等(magnitude stars);
6、优质制导传感器:4个电子耦合器(CCDs)定位在科学焦点平面上;
7、科学数据存储时间:大于60天;
8、上行X波段:7.8125 bps -2kbps;
9、下行X波段:10 bps-16kbps;
10、下行Ka波段:最大值为4.33125 Mbps;
11、除一次性装置之外,所有机械装置表面都有覆盖层,主镜有三个聚焦装置;
12、飞行组件和装配仪器的质量:1071公斤(预计最大值);
13、飞行组件和装配仪器的功率:771瓦(预计最大值)
地基望远镜主镜支撑性能分析
主镜面型精度是地基大口径望远镜最关键的技术指标之一。为了研究主镜室以及主镜底支撑和侧支撑系统的重力变形造成的主镜面型误差,介绍了一地基光电望远镜的主镜室及详细的主镜支撑结构,借助于有限元法,建立了主镜,主镜室和支撑结构的详细有限元模型,分析计算了主镜在支撑状态下的镜面变形情况,并通过ZYGO干涉仪进行了面型检测。计算结果和实测结果对比,说明了主镜室及其支撑结构引入的主镜面型误差大小,同时也验证了有限元模型的正确性。
望远镜专用PVC外装饰皮的开发应用
从生产用原材料、配方、生产工艺及影响因素等方面介绍了软质PVC在望远镜用外装饰皮中的应用,并进行了分析、探讨,提出了软质PVC在望远镜用外装饰皮中研制开发的看法与建议。
原理由两个凸透镜构成。由于两者之间如图左侧为实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。
正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜即采用设计精良的透镜正像系统。
开普集团——国家高科技术企业、中国应急电源供应商的佼佼者,拥有无锡开普动力有限公司和无锡开普机械有限公司两大生产基地。无锡开普动力有限公司成立于1998年,主要致力于发动机及通用发电机组的研制;在开普飞速发展的基础上,诞生了无锡开普机械有限公司。无锡开普动力有限公司以生产科技含量较高的机械产品为主,目前已经自主开发生产了数码发电机、超静音发电机组等系列产品,公司还根据市场的需要,逐步向兆瓦级的发电机组方向发展。今天的开普拥有1500亩的厂房、多条一流的生产装配线、完备的研发体系、先进的研发设备、和遍及全球的销售网络。开普一直在坚持新产品的研发与创新,来确保在同行业中的竞争优势。开普的目标是为用户创造先进、高品质的动力产品,提供便捷、优质的服务,让每一位客户感到满意。我们坚信,通过我们不懈的努力和执着的追求,开普将成为广大消费者的忠实伙伴。开普为客户构筑梦想,开普人将改变您生活的质量!
无锡开普KDG60迷你挖掘机,整机外观造型舒展流畅,美观大方,人性化设计,工作效率高,操作性好;开普60挖掘机具备动臂侧移装置,可以实现无尾回转。
盖勒普中国团队成员拥有良好的企业服务素质,丰富的项目实施经验和专业的技术知识背景,致力于为中国制造企业提供先进车间信息化管理的一体化服务。
咨询顾问和技术工程师通过Predator专业培训认证,取得Predator资格证书。项目经验丰富,拥有各行业大型制造企业项目实施经历。不断积极进取,持续巩固和学习专业知识 ,与美国总部接轨。不间断技术培训,保持绝对领先的技术水平和不可比拟的专业技能。专业的服务意识,精诚团结,不断创新,努力开拓的精神追求。