选择特殊符号
选择搜索类型
请输入搜索
离子渗氮又称辉光渗氮,是利用辉光放电原理进行的。辉光放电是当气体越过电晕放电区后,若减小外电路电阻,或提高全电路电压,继续增加放电功率,放电电流将不断上升。同时辉光逐渐扩展到两电极之间的整个放电空间,发光也越来越明亮。当电子能f提高,也就是增强电场的操作参数,则能使电晕放电过渡到辉光放电。
离子渗氮向工件表面渗入的氮原子,不是像一般气体那样由氨气分解而产生的,而是被电场加速的粒子碰撞含氮气体分子和原子而形成的离子在工件表面吸附、富集而形成的活性很高的氮原子。
离子渗氮时,工件放在炉内的阴极盘上,接上电源抽真空,当炉内压力降到6Pa左右时,充入氨气,使炉内压保持在1.3×102—1.3×103Pa范围内。由于炉内压力低,随后又经过加热作用,进入炉内的氨气将发生分解:2NH3=N2 3H2炉内反应所得到的气体的体积分数为25%N2和75%H2的低压环境。
在以含氮气体的低真空炉体内的条件下,气源通常采用纯氨,也可采用分解氨。把金属工件作为阴极炉体为阳极,在阴极(工件)与阳极(炉体)之间加上高压(300~900V)直流电源后,稀薄气体被电离并产生辉光放电,形成氮、氢阳离子,在阴阳极之间形成等离子区。在等离子区强电场作用下,氮和氢的正离子以高速向工件表面轰击。离子的高动能转变为热能,加热工件表面至所需温度。氮、氢等正离子在电场的加速下轰击零件表面,产生很大热量以加热零件,同时使部分铁原子溅射出来与氮结合生成FeN由于离子的轰击,工件表面产生原子溅射,因而得到净化,同时由于吸附和扩散作用,继而分解出活性氮原子向工件内部扩散而形成氮化层。其在工件表面形成渗氮层,主要有能量转换、阴极溅射、凝附等具体过程的发生。
离子氮化处理工艺:
处理温度:阀板880~900。C,阀座840~860。C
处理时间:6~8 h
最大加热速度:15℃/min
最大冷却速度:18℃/min
反应气氛:N2与H2混合气体,并适当引入其他气体,如氧等
氮势:66%~90%
工作气压:3999~5332 Pa
气体流量:100~150 L/h
电流密度:3~7 mA/cm2
拟进行离子氮化的零件必须经过彻底的清洗,以免因油污、锈斑、挥发物等而引起电弧,损伤零件。零件在装炉时,其间隙必须足够大而均匀,装载过密处往往会引起温度过高。对局部氮化的零件,可在非渗部位用外罩(对凸出面而言)或塞子(对内凹面或孔而言)屏蔽,以避免在该处起辉。装炉时还要注意合理地分布测温监控热电偶。
此外离子氮化技术主要仪器就是离子氮化炉,通过离子渗氮可以使渗氮的周期缩短60%~70%,简化工序,零件变形小,产品质量好,节约能源,无污染,是近年来发展较快的热处理工艺。离子氮化设备由氮化炉、真空系统、供氮系统、电源及温度测控系统组成。氮化介质一般采用氨或氮氢混合气体。离子氮化操作要求严格,否则易导致溢度不均匀和弧光放电。离子氮化开始于30年代,到50年代仅用于炮管内膛氮化。60年代推广使用于结构钢、工模具钢、球墨铸铁、合金铸铁、不锈钢和耐热钢等。可离子氮化的零件有轧辊、锻模、冲模、铣刀、塑料成形机螺杆、柴油机缸套等
当代离子氮化技术中,单热源的离子氮化是老的产品,已无法满足产品要求炉温的均匀性和稳定性,必须要具有双热源的离子氮化设备才能满足炉温±5度且可以随意控温,目前已广泛应用于航空航天军工等重点领域。2100433B
离子氮化,它早在1931年就已在实验室里取得成功并获专利。其所运用的辉光放电,是气体放电的一种重要形式。低气压辉光放电的击穿机制是,从阴极发射电子,在放电空间引形成相应离子,由此产生的正离子再轰击阴极使其发射出更多的电子。按其状态,辉光放电又可分为前期辉光、正常辉光和异常辉光三个不同阶段。
而大电流的稳定辉光放电设备在制造技术在当时有较大的困难;一直延迟到20世纪60年代初,人们在掌握辉光放电技术后,离子氮化才在少数国家生产中得到应用。目前世界各国包括我国在内,离子氮化生产已获得迅猛发展。
可以搜搜离子溶出这几个关键词还有就是一般离子棒遇到溶液,都会形成原电池,这样较为活泼的金属就成了负极,失去电子,变成离子,进入溶液中。
用沉淀法,加入过量的沉淀剂,过滤,烘干,称量沉淀物质的重量。 使用沉淀法时,要注意避免干扰物质的影响,如汞,最好用氯化物(如果用硫化物,就汞,铜一起沉淀了)。 另外,还要考虑废水中可能存在的其它金属离...
1、安装操作前须看产品说明书。2、连接高压电源供应器的插座必须可靠接地。3、易燃易爆的环境下不可操作离子风枪。4、不得擅自进行修理。5、使用离子风枪要轻拿轻放。
离子氮化作为七十年代兴起的一种新型渗氮方法与一般的气体渗氮相比,离子渗氮的特点是:
1)渗氮速度较快,可适当缩短渗氮周期,离子氮化时间短,能缩短到气体氮化时间的1/3~2/3。。
2)渗氮层脆性小,离子氮化表面形成的白层很薄,甚至没有,另外引起的变形小,特别适宜于形状复杂的精密零件。
3)可节约能源和氨的消耗量,电能消耗为气体氮化的1/2~1/5,氨气消耗为气体氮化的1/5~1/20。
4)易于实现局部氮化,只要设法使不欲氮化的部分不产生辉光即可,非渗氮部位便于保护,采用机械屏蔽、用铁板隔断辉光,即可保护。
5)离子轰击有净化表面作用,自动去除钝化膜,不锈钢、耐热钢材料无需预先去除钝化膜,可使不锈钢、耐热钢工件直接渗氮。
6)化合物层结构、渗层厚度和组织可以控制。
7)处理温度范围较宽,即使在350℃以下也能获得一定厚度的渗氮层。
8)劳动条件有所改善,无公害、离子渗氮处理在很低的压力下进行,排出的废气极少。气源为氮气、氢气和氨气,基本上无有害物质产生。
9)可以适用于各种材料,包括要求氮化温度高的不锈钢、耐热钢,以及氮化温度较低的工模具(工具钢)和精密零件,而低温氮化对气体氮化来说是相当困难的。
球墨铸铁曲轴的离子氮化工艺
曲轴是内燃机中最重要的零件之一,它与气缸、活塞、连杆等组成发动机的动力源装置,并由曲轴向外输出功率。曲轴工作时承受反复弯曲和扭转负荷,而主轴颈和连杆颈在高速旋转下还要承受强烈的摩擦。因此,曲轴的损坏形式主要是疲劳引
合金铸铁离子氮化工艺的研究
我公司生产的某型内燃机合金铸铁缸套(内径320mm,高810mm,壁厚20mm),不经离子氮化的缸套在磨合过程中就有拉伤现象,经过离子氮化的缸套,具有高的硬度、耐磨性和疲劳强度,从而明显地提高了其磨合性能。由于缸套的内径较大
概念
离子氮化对于球墨铸铁、合金钢、不锈钢、粉末冶金制品、钛合金、高速钢、工具钢等均有显著氮化效果。
组成
离子氮化炉由炉体、输电装置、真空获得系统、供电系统、供气系统、温度测量五部分组成。
1、炉体由炉盖、筒体、炉底盘和底架组成,其中炉盖、筒体、炉底盘夹层通冷却水,炉内设有不锈钢,合金铝双层隔热屏,炉体上设有双层钢化玻璃,以供离子氮化过程中观察炉内情况之用。
2、炉盖上设有阴极输电装置两套,带热电偶吊挂柱一套,其上装有吊挂盘,用户应根据所处理零件设计吊具,通过吊具将工件吊在吊挂盘上。
3、炉体的真空获得系统一般由两台旋片式真空泵及串有碟阀的管道系统组成,碟阀的作用是通过关闭或旋转不同的角度调节抽气量以维持不同进气量条件下的炉内压强,真空度的测量用配套的真空计读出真空值。
4、炉体的供气管进口设在炉壳筒体上,氢定标/氮定标的转子流量计各一只
5、热电偶经带热电偶吊挂柱插入炉内,进行模拟测量,由仪表记录温度,进行P、I、D控温。
为了缩短氮化周期,并使氮化工艺不受钢种的限制,在近年间在原氮化工艺基础上发展了软氮化和离子氮化两种新氮化工艺。
软氮化实质上是以渗氮为主的低温氮碳共渗,钢的氮原子渗入的同时,还有少量的碳原子渗入,其处理结果与一般气体氮化相比,渗层硬度较氮化低,脆性较小,故称为软氮化。
1、软氮化方法分为:气体软氮化、液体软氮化及固体软氮化三大类。国内生产中应用最广泛的是气体软氮化。气体软氮化是在含有活性氮、碳原子的气氛中 进行低温氮、碳共渗,常用的共渗介质有尿素、甲酰胺、氨气和三乙醇胺,它们在软氮化温度下发生热分解反应,产生活性氮、碳原子。活性氮、碳原子被工件表面 吸收,通过扩散渗入工件表层,从而获得以氮为主的氮碳共渗层。
气体软氮化温度常用560-570℃,因该温度下氮化层硬度值最高。氮化时间常为2-3小时,因为超过2.5小时,随时间延长,氮化层深度增加很慢。
2、氮化炉软氮化层组织和软氮化特点:钢经软氮化后,表面最外层可获得几微米至几十微米的白亮层,它是由ε相、γ`相和含氮的渗碳体Fe3(C,N)所组成,次层为的扩散层,它主要是由γ`相和ε相组成 。
目前国内离子氮化炉的频率是1KHz,丰东离子氮化炉脉冲电源是全逆变式,频率可以达到20KHz。频率高有以下好处:
1. 温度均匀性好
表面电流密度分布的更均匀,有利于改善炉内产品温度均匀性,尤其是针对一些氮化面积较大的产品效果显著。
2.渗氮速度快
浅渗层渗氮速度快,因为轰击频率高,金属表面活化铁离子密度高,与氮离子结合速度快,提高渗速。
3. 弱化空心阴极效应
弱化空心阴极效应,尤其是针对一些尖角、孔洞比较多的产品,有明显的改善效果。
4.降低产品灼伤风险
增强了打弧关断频率,减少因为工件表面打弧导致的产品灼伤风险。
5.清理作用
对工件表面有较强的清理作用,氮化后产品外观好。
6.对公共电网冲击少
因为开关速度快,对电源及电网的冲击少。