选择特殊符号
选择搜索类型
请输入搜索
本书概述了木结构设计中关于可靠度、受压及受弯构件的稳定性和销连接承载力计算等方面的问题,并试图提供解决有关问题的方法。主要介绍了木材与木产品的种类和性能特点,并通过可靠度分析提出了确定木材与木产品强度设计指标的方法。提出了受压木构件稳定系数的统一算式、受弯木构件侧向稳定系数的统一算式,并通过实验研究、随机有限元分析验证了受压木构件稳定系数算式的正确性和适用性。根据实验结果提出了基于欧洲屈服模式的销连接承载力的计算式,并经可靠度校准确定了对应于各屈服模式的抗力分项系数。所提出的确定木材与木产品强度设计指标的方法、受压和受弯木构件稳定系数的统一算式以及销连接承载力计算式为《木结构设计规范》GB 5005-2017所采用。 2100433B
作者:祝恩淳 潘景龙 著
出版时间: 2017-10-01
上架日期: 199001
征订号:30451
版次:第一版
页数:230
装帧:平膜
开本:大32开①
印张:7.750
ISBN:978-7-112-20793-0
比钢结构,混凝土结构简单多了
木结构设计手册 txt全集附件已上传到百度网盘,点击免费下载:应该是全本了
你好,上海木结构设计公司推荐上海臻源木结构设计工程有限公司,有专业的木结构施工团队都具备多年的安装施工经验,目前主要为国外的工程进行设计和技术指导,具有丰富的重木结构行业从业经验。希望我的回答对你有所...
木结构设计
5 木结构设计 5.1 一般规定 《木结构设计规范》 GBJ5—88 2.1.1 承重结构用的木材 ,应从本规范表 3.2.1—1所列的树种中选用。 重要的木制连接件应采用细密、 直 纹、无节和无其他缺陷的耐腐的硬质阔叶材。 2.1.2 承重结构用的木材,其材质分为三级。设计时,应根据构件的受力种类按表 2.1.2—1的要求选用 适当等级的木材。 承重结构木构件材质等级 表 2.1.2—1 项次 构件类别 材质等级 1 2 3 受拉或拉弯构件 受弯或压弯构件 受压构件及次要受弯构件 (如吊顶小龙骨 等 ) Ⅰ Ⅱ Ⅲ 注: 1.屋面板、挂瓦条等次要构件可根据各地习惯选材,本规范不统一规定其材质等级。 2.本表中木材材质等级系按承重结构的受力要求分级,其选材应符合本规范附录二材质标准的规 定,不得用一般商品材的等级标准代替。 胶合木结构用的木材材质, 亦分为三级。计时,应根据胶合
参加联合平差的天文大地网与GPS2000网,都经过了单独平差,并获得了各自的坐标平差值及其方差协方差。从理论上讲,可采用坐标及其方差协方差参与平差,或采用两者的直接观测值参与平差。前者平差模型比较简单,但由于二网之间存在某种还很难确定的系统误差(主要是地面网有系统误差),这使它们统一精确的方差协方差阵很难获得。因此在联合平差中我们采用空间网的坐标及其方差协方差和地面网的直接观测值进行联合平差的数学模型。
地面网包括方向观测、导线边、天文方位角不同类的观测数据,同一类观测又分不同等级。它们的验前方差大多有一定的精度,但对观测量少的不是很准确。因此对地面网中不同类不同等级观测值需要进行方差分量估计,给予合理的权的匹配。这就是本文研究和探讨的主要内容。国内外文献介绍的最常用方差验后估计方法有方差分析法、在测量中为赫尔默特方差估计方法,K.Kubik的最大似然估计法,Rao提出的MINQUE法(最小范数二次无偏估计法)。
从统计的角度来说,赫尔默特方差分量估计具有无偏的良好特性,但对于全国近5万大地点的联合平差来说,矩阵求逆及存贮所有子矩阵,即便是大型计算机都较难实现,所以在这里只能采用近似的方差分量估计方法。关于近似方差分量估计算法的可靠性验证,从理论上分析具有很大的难度。针对天文大地网我们采用下述方法进行可靠性验证:①将若干类观测值的方差给予较大的粗差,通过近似方差分量估计能否找到它们的位置,即不正确方差分量的诊断和定位问题;②通过近似方差分量估计能否将这些含有粗差的方差分量调回到正确的方差值。
首先根据原天文大地网的基本方向观测情况确定本次实验所调整的方差分量依据。
(1)联合平差中方差分量估计方法及其可靠性检验
用VisualFortran6.5A根据上面介绍的赫尔默特方差分量简化算法编制了方差分量估计软件,用此软件及Baumker方法分别对天文大地网中近1万点方向观测值按下面各种实验方案进行分析、比较。1)所用试验数据的基本情况统计分别见表1~表2)对二种简化模型的敏感性及可靠性检验给一等三角锁的方差比较大的粗差,用二种简化方法进行方差分量估计,以检验:是否对有错误的方差分量反映敏感;经多次迭代及重复定权后能否回到正确值。其调整值及方差分量计算结果见表3。
从表3可看出这两种方法对有误差的权都敏感,但Helmert方法两次迭代后回到正确的中误差,而Baumker方法迭代5次后定出的中误差仍然有偏。
(2)多个不正确方差分量的诊断与定位
有意识调整多个权标记中误差(选择认为比较准的及不太准的观测等级的方差分量),检验上述两种方法能否发现有错误的方差分量并准确定位。从上表中可以看出,用不同的方法定出的方向观测值的中误差不同,相对而言,Helmert方法定出的方差分量比Baumker合理,用上述三种不同方式试验得出的结论基本是一致的。
综合分析以上实例计算结果,我们可以得出如下结论。
1)赫尔默特简化方法与Baumker方法对于偏离较大的观测等级中误差反映灵敏,经一次迭代后大都能回到1~1.5倍的中误差范围内。
2)对于偏离正确值比较小的观测类中误差,赫尔默特方差分量估计仍能很好地估计其方差,将中误差调整到正确值,而Baumker则不能(见表3)。
3)当各类观测数量比较多时,且大致相当时,用这两种方法均可很好地调整方差分量,但Baumker方法迭代次数较多。
4)对于观测量相对较少时(权标记1、3),用两种方法估计其结果相差较大(最大的差0.12)。
5)赫尔默特方差分量估计简化方法与Baumker方法在一定程度上都能估计多类观测值的方差分量,但用赫尔默特简化方法调整的各等方向观测的中误差比较合理。而用Baumker方法调整后的权标记1、2(一等三角网锁与二等三角网锁)的方向观测中误差相同,即不很合理。
6)方差分量估计方法与观测量的多少与分布有关。从数学模型上看,赫尔默特方差分量估计简化方法仍保留部分布网结构信息,而Baumker方法只与观测值改正数及观测数有关,理论上说Baumker方法对于观测量相对较少所估计的方差分量较差。
“强柱弱梁”作为我国抗震规范抗震措施中重要的一条,对于 9 度区及一级抗震等级,它要求节点处柱上、下端实际受弯承载力之和在地震作用效应下应大于梁端受弯承载力之和。但当考虑现浇楼板内板筋对框架梁抗弯能力的提高作用时,究竟需对柱端弯矩设计值增大多少,才能满足“强柱弱梁”的要求,一直是设计界悬而未决的问题。而其中怎样考虑板筋作用以及考虑多少范围内的板筋则是这个问题的关键。
中国规范现状
我国新颁布实施的《混凝土结构设计规范》(GB 50010 -2002)和《建筑抗震设计规范》(GB 50011-2001) 提高了“强柱弱梁”的弯矩增大系数,规定 9 度及一级框架结构尚应考虑框架梁的实际受弯承载力;并在《建筑抗震设计规范》条文说明中指出“弯矩增大系数考虑了一定的超配钢筋和钢筋超强”,但对框架梁翼缘现浇板内与梁肋平行的钢筋参与梁端负弯矩承载能力的问题,新规范仍未作明确的规定,只是在《建筑抗震设计规范》条文说明中附带指出,当计算梁端抗震承载力时,若计入楼板内的钢筋,且材料强度标准值考虑一定的超强系数,则可以提高框架结构“强柱弱梁”的程度。对比实验表明,由于梁翼缘现浇板内平行于梁肋的钢筋参与形成梁端抗弯承载力,
在所试验的梁—柱组合体试件中,支座处的负屈服弯矩要比无翼缘矩形梁的负屈服弯矩提高 30%左右。如果把数值1.3作为板筋参与系数考虑到“强柱弱梁” 弯矩增大系数中去,就可以发现新规范的仍然是远远不够的。当然,由于板内平行于框架的板筋相对数量差异较大,板筋对梁端负弯矩承载力的增大系数并非总是1.3,但唐山地震中整体现浇梁板框架的破坏大多发生在柱上,而没有现浇楼板的空框架裂缝则都显示在框架梁上的事实从一个侧面证明了这一点。
国外规范对板筋参与梁端负弯矩受力的规定
鉴于中国规范对这方面的有关问题仍未明确,因此,了解国外有关规范对此作出的规定,对我国设计界正确处理有关问题是有益的。
在考虑板筋参与问题上各国思路之间也有原则性差别。其中新西兰规范明确规定,在进行梁端截面抗负弯矩设计时,即确定设计所需的负弯矩钢筋时,可以考虑板有效宽度范围内的与梁肋平行的上板面和下板面板筋作为负弯矩受拉钢筋的组成部分。因此,按该规范算出的梁负弯矩筋就只是除去相应板筋外所需要的受拉钢筋。当按实配确定梁端抗弯能力时,自然就必须把已考虑的板筋计入,而且在没有人为增大配筋量的前提下,考虑板筋后的梁端抗负弯矩能力与作用负弯矩应没有大的差别。所以,按新西兰的上述思路,板筋不属于“超配”,自然在“强柱弱梁”的措施中也就可以不考虑板筋引起的“超配”问题。
而美国 ACI 规范,加拿大 CSA 规范以及欧共体 EC8 规范在作梁端抗负弯矩截面设计时与中国思路一样,未要求考虑板筋,但与中国规范不同的是,中国规范是将设计所需的梁端负弯矩筋与无现浇板的框架梁一样布置在梁肋顶部的宽度范围内,而这三本规范规定梁端计算出的负弯矩筋除了大部分应放在肋宽范围内,少部分则可放在规范规定的一定板宽范围内。其中美国和加拿大规范认为这样做的目的是避免上部板筋过于拥挤和避免在临近梁肋的板内出现过宽的裂缝。因此,当按实配确定梁端抗弯能力并考虑有效宽度内与梁筋平行的钢筋时,这部分钢筋可能既有原设计所需的受拉钢筋,又有额外的板筋,而只有额外的板筋才属于“超配”部分。
国内外研究成果分析
Pantazopoulou 等人曾建议了一种确定板的有效宽度的理论方法,该方法首先假设了在板截面中的非线性应变分布函数,然后根据钢筋性能、梁中最大应变和板的最大宽度导出一个有效板宽的表达式,并给出了适用于中间节点和端节点的不同模型。但美国的一些学者如 French 等人对Pantazopoulou 的模型分析后认为,板对梁抗弯能力的贡献取决于一系列变量,其中包括节点的类型(中间节点还是端节点)、直交梁刚度,侧向变形的水准以及水平加载的特征(单轴还是双轴),当前看来还没有找到能适当考虑所有有关变量的解析解。
美国 M . R . Ehsani 等人于1982年曾做了 6 个带直交梁和楼板(板厚 4 英寸)的足尺边节点试验,设计时考虑梁的每侧只有二根楼板纵向钢筋参与梁的抗弯作用,但是实测表明,40 英寸宽的楼板内所有板筋都达到屈服,导致梁的抗弯强度增大,结果造成塑性铰在板面以上的柱端形成。因此他们建议在实际结构中对于带楼板和直交梁的节点,在计算梁的抗弯强度时,应考虑主梁每侧至少各一倍梁宽范围内的楼板纵向钢筋作用,即有效宽度为 3 倍梁宽。
1987 年同济大学和中国建筑科学研究院与日本、新西兰和美国进行合作,作了 6 个足尺的双向节点试验,其中有两个是带楼板(板厚100 mm,配有双层双向钢筋φ10 @175 mm) 的双轴受力节点。试验表明,楼板明显提高了梁负弯矩抗弯能力,楼板的有效宽度随位移延性加大而增大,当μΔ=1 时,影响宽度达 740 mm,当 μΔ=3 时达1732 mm。
1994 年东南大学蒋永生等人进行了一个梁板整浇的和一个没有板的框架中节点的对比实验。试验表明,梁板整浇的框架节点,在梁顶面受拉钢筋屈服的同时,靠近梁的部分板内上部钢筋亦达到屈服;当 μΔ=3 时达最大承载力,此时梁侧 6 倍板厚范围内板顶、底面的钢筋均达到屈服。根据试验结果他们认为对于梁板现浇的框架节点,当梁端上部受拉时,应考虑平行于框架梁且有足够锚固长度的板内钢筋参与工作,并认为可近似取梁每侧六倍板厚范围作为板的有效宽度。
美国学者 French 等人收集和总结了各国 20 个梁-板-柱节点(13 个中节点、7 个端节点)试验结果,对获得的数据进行分析后认为,如果将板的有效宽度取为 ACI 规范规定的有效宽度,则计算出的抗弯强度就将接近于实测的当层间水平位移角为2%( 约相当于位移延性系数为4) 时的抗弯强度;同时 French 也指出,由于板的作用是极其复杂的,它与许多变量有关,而所获得的实验数据依然非常有限,因此对板有效宽度的确定仍然带有很大的近似性。
应该指出的是,板有效宽度是一种折算宽度,不是板的实际参与宽度,也不是板参与梁抗弯时所能达到的屈服宽度。图 1 给出了一个典型的实测板筋的应变分布图,从图中可以看出,无论是上部板筋还是下部板筋,都有较大宽度范围内的板筋参与工作,但只有很小宽度范围的板筋达到屈服。板有效宽度实际上是将板所提供的有效抗弯能力折算成一定范围内板完全参与受弯(即考虑达到屈服)的一种折算宽度。
研究结论
(1)板有效宽度是一种计算折合宽度,不是板的实际参与宽度,也不是板参与梁抗弯时所能达到的屈服宽度。
(2)根据按中国规范设计的典型框架所能达到的最大层间位移角,可取梁每侧六倍板厚范围作为板的有效宽度。
(3)对框架端节点来说,当直交边梁的抗弯和抗扭刚度与纵梁相比不至于相差太多时,在端节点处仍然可以取梁每侧六倍板厚作为板的有效宽度;但如果直交边梁刚度偏弱,则板的有效宽度取值应相应减少。
(4)在考虑板筋参与梁端抗弯的同时,应注意参与受力板筋的锚固问题和板内与梁垂直方向横向钢筋的设置问题,以保证纵向板筋能有效的参与梁端抗弯。
总结BIM在深化设计、施工组织、碰撞检查这三大应用中的优势,准确地定位BIM的应用,使得BIM在工程建设中得到充分表达。
深化设计
深化设计是指在工程实施过程中对招标图纸或原施工图的补充与完善,使之成为可以现场实施的施工图。深化设计具有工作复杂,涉及专业众多,需满足各专业技术和规范,了解材料及设备的知识的特点。所以深化设计的工作极其繁琐,特别是在大型复杂的建筑工程项目设计中,设备管线由于系统繁多、布局复杂,常常出现管线之间或管线与结构构件之间发生碰撞的情况,给施工带来麻烦,影响建筑室内净高,造成返工或浪费,甚至存在安全隐患。
另外在建筑的相关行业中,由于缺乏跨行业的相关标准规范,设计到制造过程中的数据链条断裂,导致行业的协同困难效率低下,严重影响了行业的工业化进程。例如,幕墙行业与传统制造业相比,幕墙板块的定制化程度更高,不仅体现在各个项目的设计不同,甚至有时在一个项目中的幕墙面板也各不相同,需要灵活、快速的按需生产。同时随着新材料、新技术的出现以及人类对建筑外观的不断追求,使得幕墙的尺寸越来越大,形状也日益复杂,随之而来的便是现场安装的困难。如果交货顺序和安装过程管理不善,混淆幕墙板块的安装位置,就可能造成工期延误和资源的浪费。
为了避免上述情况的发生,传统的施工流程中通过深化设计时的二维管线综合设计来协调各专业的管线布置,但它只是将各专业的平面管线布置图进行简单的叠加,按照一定的原则确定各种系统管线的相对位置,进而确定各管线的原则性标高,再针对关键部位绘制局部的剖面图。由于传统的二维管线综合设计存在以上不足,采用BIM技术进行三维管线综合设计方式就成为针对大型复杂建筑管线布置问题的优选解决方案。
BIM技术在深化设计中的优势:
传统深化设计过程中系统参数复核计算是拿着二维平面图在算,平面图与实际安装好的系统几乎都有较大的差别,导致计算结果不准确。偏大则会造成建设费用和能源的浪费,偏小则会造成系统不能正常工作。对于大型复杂的工程项目,采用BIM技术进行深化设计有着明显的优势。BIM模型是对整个建筑的全尺寸、全信息的三维模型,建模的过程可发现大量隐藏在设计中的问题,同时也是一次全面的“三维校审”过程。所以与传统2D深化设计对比,BIM技术在深化设计中的优势主要体现在以下几个方面:
1、三维可视化、精确定位
采用三维可视化的BIM技术却可以使工程完工后的状貌在施工前就呈现出来,表达上直观清楚。模型均按真实尺度建模,而传统表达予以省略的部分(如管道保温层等)均得以展现,从而将一些看上去没问题,而实际上却存在的深层次问题暴露出来。传统的平面设计成果为一张张的平面图,并不直观,平面图纸与三维模型实时对应三维模型与实物对照。
2、碰撞检测、合理布局
传统的二维图纸往往不能全面反映个体、各专业个系统之间的碰撞可能,同时由于二维设计的离散型为不可预见性,也将使设计人员疏漏掉一些管线碰撞的问题。而利用BIM技术可以在管线综合平衡设计时,利用其碰撞检测的功能,将碰撞点尽早的反馈给设计人员,与业主、顾问进行及时的协调沟通,在深化设计阶段尽量减少现场的管线碰撞和返工现象。这不仅能及时排除项目施工环节中可以遇到的碰撞冲突,显著减少由此产生的变更申请单,更大大提高了施工现场的生产效率,降低了由于施工协调造成的成本增长和工期延误。
3、设备参数复核计算
在机电系统安装过程中,由于管线综合平衡设计,以及精装修调整会将部分管线的行进路线进行调整,由此增加或减少了部分管线的长度和弯头数量,这就会对原有的系统参数产生影响。现在运用BIM技术后,当您绘制好机电系统的模型,接下来只需点击几下鼠标就可以让BIM软件自动完成复杂的计算工作。模型如有变化,计算结果也会关联更新,从而为设备参数的选型提供正确的依据。
施工组织
借住BIM数据库中的数据具有可计量的特点,大量相关的工程信息可为工程提供数据后台,将成为施工管理巨大支撑。具体的讲,运用BIM技术,能使工程结构信息、成本数据、进度数据、合同信息、产品数据、报告信息等紧密地联系起来。施工各个步骤变得具体、清晰,施工步骤间的关系变得直观、明了。进而人力、资金、材料、机械和施工方法这五要素能够被安排得科学、合理,使工程活动得以实现有组织、有计划、有秩序的施工,使得工程项目质量好、进度快、成本低。具体的,BIM施工组织中的运用体现在以下几个方面:
一、现场布置优化
随着建筑业的发展,对项目的组织协调要求越来越高。这体现在施工现场作业面大,各个分区施工存在高低差;现场复杂多变,容易造成现场平面布置不断变化;项目周边环境的复杂往往会带来场地狭小、基坑深度大、周边建筑物距离近、绿色施工和安全文明施工要求高等问题。BIM技术为平面布置工作提供一个很好的平台,在创建好工程场地模型与建筑模型后,通过创建相应的设备、资源模型进行现场布置模拟。同时还可以将工程周边及现场的实际环境以数据信息的方式挂接到模型中,建立三维的现场场地平面布置,并通过参照工程进度计划,可以形象直观地模拟各个阶段的现场情况,灵活地进行现场平面布置,实现现场平面布置合理、高效。
二、进度优化
建筑工程项目进度管理在项目管理的重要组成部分,而进度优化是进度控制的关键……BIM对工程的模型的建立达到构建级别,所以BIM技术可实现进度计划与工程构件的动态链接。这样可通过甘特图、施工模拟等多种形式直观表达进度计划和施工过程,形象直观、动态模拟施工阶段过程和重要环节施工工艺,将多种施工及工艺方案的可实施性进行比较,为最终方案优选决策提供支持。为工程项目的施工方、监理方与业主等不同参与方直观了解工程项目情况提供便捷的工具。
基于BIM技术对施工进度可实现精确计划、跟踪和控制,动态地分配各种施工资源和场地,实时跟踪工程项目的实际进度,并通过计划进度与实际进度进行比较,及时分析偏差对工期的影响程度以及产生的原因,采取有效措施,实现对项目进度的控制,保证项目能按时竣工。
三、工作面管理
在施工现场,不同专业在同一区域、同一楼层交叉施工的情况是正常现象,对于一些大型工程和超高层建筑项目,由于分包单位众多、专业间频繁交叉施工,不同专业之间的协同、资源合理分配、工作过程的衔接显得尤为重要。
碰撞检测
根据美国建筑行业研究院2007颁布的美国国家BIM标准,建筑业的无效工作(浪费)高达57%。BIM就是解决建筑业资源浪费,建立建筑业低碳经济时代的有效方法。美国斯坦福大学在总结BIM技术价值时发现,使用BIM技术可以消除40%的预算外变更,通过及早发现和解决冲突可降低10%合同价格。碰撞检查则是利用BIM技术消除变更与返工的一项主要工作。
工程中实体相交定义为碰撞,实体间的距离小于设定公差,影响施工或不能满足特定要求也定义为碰撞,为区别二者分别命名为硬碰撞和间隙碰撞。
硬碰撞:实体在空间上存在交集。这种碰撞类型在设计阶段极为常见,发生在结构梁、空调管道和给排水管道三者之间。
间隙碰撞:实体与实体在空间上并不存在交集,但两者之间的距离d比设定的公差T小时即被认定为碰撞。该类型碰撞检测主要出于安全、施工便利等方面的考虑,相同专业间有最小间距要求,不同专业之间也需设定的最小间距要求,同时还需检查管道设备是否遮挡墙上安装的插座、开关等。
碰撞检查流程主要工作分为以下五个阶段:
第一阶段:土建、安装各个专业模型提交;
第二阶段:模型审核并修改;模型审核并修改;
第三阶段:系统后台自动碰撞检查并输出结果,撰写并提供碰撞检查报告;
第四阶段:根据碰撞报告修改优化模型;
第五阶段:重复以上工作,直到无碰撞为止。
对于大型复杂的工程项目,采用BIM技术进行碰撞检查有着明显的优势及意义。在此过程中可发现大量隐藏在设计中的问题,这些都是在传统的单专业校审过程中很难被发现。所以与传统2D管线综合对比,三维管线综合设计的优势具体体现在:
1、三维渲染的动画视频,给人以真实感和直接的视觉冲击。在投标阶段能给业主更为直观的宣传介绍,大大提升中标几率。
2、BIM最直观的特点在于三维可视化,在将所有专业管线放在同一模型中时,可全面检测管线之间、管线与土建之间的所有碰撞问题,进而反馈给各专业工程师进行调整,既能优化工程设计,减少在建筑施工阶段可能存在的错误损失和返工整改的可能性,也能优化净空,优化管线排布方案。最后施工人员可以利用碰撞优化后的三维管线方案,进行施工交底,提高施工质量。
3、三维的BIM模型可浏览、可漫游,管线关系一目了然。全方位的三维模型可在任意位置剖切大样及轴测大样图,观察并调整该处管线的标高,以多种角度进行直观展现。
4、BIM模型对管线标高进行全面精确的定位,通过旋转视图直观反映楼层净高的分布状态,轻松发现影响净高的瓶颈位置,从而优化设计,优化管路走向。
5、由于BIM模型已集成了各类管线的信息数据,因此可以准确快速计算工程量,并对设备管线进行精确的列表统计,从而提升施工预算的精度与效率,大大降低由于人工统计工程量而出现的潜在错误。
由此可见,BIM技术进行三维的管线综合设计的优势是非常巨大的,有了BIM这样一个信息交流平台,可以使业主、管理公司、施工单位、施工班组等众多单位在同一个平台上实现数据共享,使沟通更为便捷、协作更为紧密、管理更为有效。