选择特殊符号
选择搜索类型
请输入搜索
PTC(Positive Temperature Coefficient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或 SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的PTC热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化.
PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻.PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。
PTC热敏电阻除用作加热元件外,同时还能起到“开关”的作用,兼有敏感元件、加热器和开关三种功能,称之为“热敏开关”,如图2和3所示.电流通过元件后引起温度升高,即发热体的温度上升,当超过居里点温度后,电阻增加,从而限制电流增加,于是电流的下降导致元件温度降低,电阻值的减小又使电路电流增加,元件温度升高,周而复始,因此具有使温度保持在特定范围的功能,又起到开关作用.利用这种阻温特性做成加热源,作为加热元件应用的有暖风器、电烙铁、烘衣柜、空调等,还可对电器起到过热保护作用.
PTC热敏电阻的主要特点是:
①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;
②工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;
③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;
④使用方便,电阻值可在0.1~100kΩ间任意选择;
⑤易加工成复杂的形状,可大批量生产;
⑥稳定性好、过载能力强.2100433B
PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得。 陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子。
对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中,因此而产生高的电阻.这种效应在温度低时被抵消;在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应。
PTC热敏电阻是开发早、种类多、发展较成熟的敏感元器件.PTC热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化。若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:
σ=q(nμn pμp)
因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.
炭黑填充聚偏氟乙烯复合材料的PTC效应
以聚偏氟乙烯(PVDF)为基体,经与炭黑等混合后挤出成型辐照。研究了两种不同类型导电炭黑(CB)对复合物导电性和正电阻温度系数(PTC)的影响,辐射剂量对PTC性能的影响,以及HDPE/PVDF配比对复合物PTC性能的影响。通过CB在HDPE/PVDF中配比不同时分布的扫描电镜(SEM)观测,随着PVDF含量的增加,CB聚集的情况明显减弱,有利于偏析现象的产生,从而有利于CB结构分布的稳定。结果表明,HDPE/PVDF/CB三元复合体系具有很强的PTC特性,经过150kGy辐照可以消除负电阻温度系数(NTC)效应,PTC稳定性增强。
高密度聚乙烯/炭纤维复合体系的PTC效应
以高密度聚乙烯(HDPE)为基体,添加不同长度的炭纤维(CF)制备了HDPE/CF复合体系。用显微镜观察了复合体系中CF的形态,测试了复合体系的逾渗值、正温度系数效应(PTC)的强度和多次热循环后的PTC强度。用DSC分析了复合体系的结晶性能与PTC稳定性的关系。结果表明,CF的长度对复合体系的电导率、渝渗阈值和PTC强度的稳定性有明显的影响,3 mm长的CF使复合体系具有最低的渝渗值(11.76%)和最高的PTC强度(8个数量级),并具有较好的PTC强度稳定性。DSC结果反映了CF在HDPE中起了成核剂的作用,使HDPE结晶温度升高、范围变宽。CF在复合体系中形成更为稳定的导电网络,并抑制HDPE分子链的高温运动。
相当多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。2100433B
掺杂BaTiO3陶瓷是主要的热敏陶瓷。BaTiO3的PTC效应与其铁电性相关,其电阻率突变同居里温度Tc相对应。但是,没有晶界的BaTiO3单晶不具有PTC效应。只有晶粒充分半导化,晶界具有适当绝缘性的BaTiO3陶瓷才具有PTC效应。当制备BaTiO3热镦陶瓷时,采用施主掺杂使晶粒充分半导化,采用氧气氛烧结使晶界及其附近氧化,具有适当的绝缘性,缓慢冷却也使晶界氧化充分,PTC效应增强。
关于BaTiO3的PTC效应,Heywang基于该效应同居里点相关的事实,认为施主掺杂BaTiO3晶粒边界存在的二维受主型表面态与晶粒的载流子相互作用,产生晶粒表面的势垒层。势垒高度φ与有效介电常数ε成反比。当温度低于居里点时,e约为104,因此,φ很小时,电阻率也小。
说一种材料具有PTC (Positive Temperature Coefficient) 效应, 即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有PTC效应。在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。