选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

缺陷检测

缺陷检测通常是指对物品表面缺陷的检测,表面缺陷检测是采用先进的机器视觉检测技术,对工件表面的斑点、凹坑、划痕、色差、缺损等缺陷进行检测。

缺陷检测基本信息

缺陷检测主要功能

为了满足实际生产的需要,表面缺陷检测系统具有以下适用功能:

自动完成工件与相机获取图像同步

自动检测产品表面斑点、凹坑、铜点、划伤等缺陷

可根据需要对缺陷类型学习并进行命名

可根据需要选择需要检测的缺陷类型

可根据需要自主设定缺陷大小

对不良位置进行定位,可控制贴标设备会打印设备进行标识

对不良品图像进行自动存储,可进行历史查询

自动统计(良品、不良品、总数等)

异常时提供声、光报警,并可控制设备停机

系统有自学习功能,且学习过程操作简单

查看详情

缺陷检测造价信息

  • 市场价
  • 信息价
  • 询价

测温功能+特性检测功能

  • 品种:断路器附件;系列:CV2-12(i);规格:温度接收模块安装在开关柜上;
  • 常熟开关
  • 13%
  • 上海西屋开关有限公司
  • 2022-12-07
查看价格

线路电流检测

  • 16路线路电流检测器,含电流变送器
  • 江苏明朗
  • 13%
  • 江苏明朗照明科技有限公司
  • 2022-12-07
查看价格

雷达流量检测模块

  • 雷达流量检测模块
  • 海通
  • 13%
  • 江苏海通交通集团有限公司南宁分公司
  • 2022-12-07
查看价格

线路电流检测

  • 16路线路电流检测器;含电流变送器
  • 大峡谷
  • 13%
  • 大峡谷照明系统(苏州)股份有限公司
  • 2022-12-07
查看价格

线路电流检测

  • 16路线路电流检测器,含电流变送器
  • 光联照明
  • 13%
  • 上海光联照明有限公司
  • 2022-12-07
查看价格

COD检测

  • 0-100mg/L (MICROMAC-C-COD)
  • 珠海市2016年4月信息价
  • 建筑工程
查看价格

COD检测

  • 0-100mg/L (MICROMAC-C-COD)
  • 珠海市2016年2月信息价
  • 建筑工程
查看价格

COD检测

  • 0-100mg/L (MICROMAC-C-COD)
  • 珠海市2016年1月信息价
  • 建筑工程
查看价格

COD检测

  • 0-100mg/L (MICROMAC-C-COD)
  • 珠海市2015年12月信息价
  • 建筑工程
查看价格

COD检测

  • 0-100mg/L (MICROMAC-C-COD)
  • 珠海市2015年9月信息价
  • 建筑工程
查看价格

环境检测设施亮度检测

  • 亮度检测
  • 2个
  • 1
  • 普通
  • 含税费 | 含运费
  • 2014-02-14
查看价格

消防检测

  • 1.第三方检测单位消防检测,出具检测报告
  • 1点
  • 3
  • 高档
  • 含税费 | 含运费
  • 2022-11-03
查看价格

消防检测

  • 消防检测
  • 1消防检测
  • 1
  • 不含税费 | 不含运费
  • 2009-09-02
查看价格

防雷检测

  • 1.名称防雷检测
  • 1系统
  • 3
  • 高档
  • 含税费 | 含运费
  • 2022-11-03
查看价格

树木无损检测探伤仪

  • 主要特点: 产品可设定木材截面需安装传感器的个数,最多为12个传感器. 可显示应力波传播时间,在检测过程中可实时观察检测数据. 木材缺陷成像软件可纪录各个检测点之间的应力波传播数据、应力波传播线段图和木材内部缺陷图像.可以打印检测情况报告单,将木材截面缺陷成像情况输出.
  • 1台
  • 1
  • 中档
  • 含税费 | 含运费
  • 2018-12-13
查看价格

缺陷检测应用案例

缺陷检测系统应用最多的有金属表面、玻璃表面、纸张表面、电子元器件表面等对外观有严格要求又有明确指标的物品。

查看详情

缺陷检测软件简介

当前,国内外很多软件企业开发了不少该类检测软件,该系统可根据设定的技术指标要求自动进行检测,并对有缺陷部位进行标识,还可以根据需要自动分拣、剔除。

以表面缺陷检测系统为例对该系统做简要说明:

查看详情

缺陷检测常见问题

查看详情

缺陷检测文献

玻璃缺陷检测 玻璃缺陷检测

玻璃缺陷检测

格式:pdf

大小:1.3MB

页数: 9页

WORD完美格式编辑 专业资料整理 玻璃片缺陷视觉检测 1.玻璃缺陷特征 玻璃片生产过程中,常见的缺陷有:气泡、划痕、结石、夹杂物,翘曲等。各类缺陷的主要特点分: (1) 气泡,该类缺陷是由于玻璃生产材料含有气体、外界环境气泡、金属铁丝等引起,主要特点为整 体轮廓近似于圆形、线形、中空、具有光透射性等。 (2) 结石,由于其热胀系数和外界环境热胀系数的差异,该类缺陷严重影响玻璃质量。主要分为:原 材料结石、耐火材料结石以及玻璃析晶结石等。 (3) 夹锡,夹锡主要分为粘锡和锡结石,其特点是呈暗黑色、具有光吸收性。 (4) 划伤,该缺陷主要是玻璃原板与硬质介质间的相互摩擦产生,外表呈线性。 (5) 表面裂纹及线道,其特点表面呈线性。 具体的缺陷图如图 1-1 所示: (a)无缺陷玻璃图像 (b)含气泡玻璃图像 (c)含结石玻璃图像 (d)含裂纹玻璃图像 (e)含夹杂物的玻璃图像 (f) 划痕的

玻璃缺陷检测 (2) 玻璃缺陷检测 (2)

玻璃缺陷检测 (2)

格式:pdf

大小:1.3MB

页数: 9页

WORD完美格式编辑 专业资料整理 玻璃片缺陷视觉检测 1.玻璃缺陷特征 玻璃片生产过程中,常见的缺陷有:气泡、划痕、结石、夹杂物,翘曲等。各类缺陷的主要特点分: (1) 气泡,该类缺陷是由于玻璃生产材料含有气体、外界环境气泡、金属铁丝等引起,主要特点为整 体轮廓近似于圆形、线形、中空、具有光透射性等。 (2) 结石,由于其热胀系数和外界环境热胀系数的差异,该类缺陷严重影响玻璃质量。主要分为:原 材料结石、耐火材料结石以及玻璃析晶结石等。 (3) 夹锡,夹锡主要分为粘锡和锡结石,其特点是呈暗黑色、具有光吸收性。 (4) 划伤,该缺陷主要是玻璃原板与硬质介质间的相互摩擦产生,外表呈线性。 (5) 表面裂纹及线道,其特点表面呈线性。 具体的缺陷图如图 1-1 所示: (a)无缺陷玻璃图像 (b)含气泡玻璃图像 (c)含结石玻璃图像 (d)含裂纹玻璃图像 (e)含夹杂物的玻璃图像 (f) 划痕的

铸件缺陷质量检测

铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。

一、铸件表面及近表面缺陷的检测

1)液体渗透检测

液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。

2)涡流检测

涡流检测适用于检查表面以下一般不大于6~7MM深的缺陷。涡流检测分放置式线圈法和穿过式线圈法2种。当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在,涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。

3)磁粉检测

磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。磁化设备用来在铸件内外表面产生磁场,磁粉或磁悬浮液用来显示缺陷。当在铸件一定范围内产生磁场时,磁化区域内的缺陷就会产生漏磁场,当撒上磁粉或悬浮液时,磁粉被吸住,这样就可以显示出缺陷来。这样显示出的缺陷基本上都是横切磁力线的缺陷,对于平行于磁力线的长条型缺陷则显示不出来,为此,操作时需要不断改变磁化方向,以保证能够检查出未知方向的各个缺陷。

二、铸件内部缺陷的检测

对于内部缺陷,常用的无损检测方法是射线检测和超声检测。其中射线检测效果最好,它能够得到反映内部缺陷种类、形状、大小和分布情况的直观图像,但对于大厚度的大型铸件,超声检测是很有效的,可以比较精确地测出内部缺陷的位置、当量大小和分布情况。

1)射线检测(微焦点XRAY)

射线检测,一般用X射线或γ射线作为射线源,因此需要产生射线的设备和其他附属设施,当工件置于射线场照射时,射线的辐射强度就会受到铸件内部缺陷的影响。穿过铸件射出的辐射强度随着缺陷大小、性质的不同而有局部的变化,形成缺陷的射线图像,通过射线胶片予以显像记录,或者通过荧光屏予以实时检测观察,或者通过辐射计数仪检测。其中通过射线胶片显像记录的方法是最常用的方法,也就是通常所说的射线照相检测,射线照相所反映出来的缺陷图像是直观的,缺陷形状、大小、数量、平面位置和分布范围都能呈现出来,只是缺陷深度一般不能反映出来,需要采取特殊措施和计算才能确定。国际铸业网出现应用射线计算机层析照相方法,由于设备比较昂贵,使用成本高,无法普及,但这种新技术代表了高清晰度射线检测技术未来发展的方向。此外,使用近似点源的微焦点X射线系统实际上也可消除较大焦点设备产生的模糊边缘,使图像轮廓清晰。使用数字图像系统可提高图像的信噪比,进一步提高图像清晰度。

2)超声检测

超声检测也可用于检查内部缺陷,它是利用具有高频声能的声束在铸件内部的传播中,碰到内部表面或缺陷时产生反射而发现缺陷。反射声能的大小是内表面或缺陷的指向性和性质以及这种反射体的声阻抗的函数,因此可以应用各种缺陷或内表面反射的声能来检测缺陷的存在位置、壁厚或者表面下缺陷的深度。超声检测作为一种应用比较广泛的无损检测手段,其主要优势表现在:检测灵敏度高,可以探测细小的裂纹;具有大的穿透能力,可以探测厚截面铸件。其主要局限性在于:对于轮廓尺寸复杂和指向性不好的断开性缺陷的反射波形解释困难;对于不合意的内部结构,例如晶粒大小、组织结构、多孔性、夹杂含量或细小的分散析出物等,同样妨碍波形解释;另外,检测时需要参考标准试块。

查看详情

常见钢管缺陷及其检测波形特点

常见钢管缺陷及其检测波形特点

摘要:众所周知,超声检测技术中对缺陷评定的三大关键内容是缺陷的定量、定位和定性。目前缺陷定量与定位方法已较成熟,但对缺陷的定性却仍存在许多实际困难。本文主要研究无缝钢管在热处理后进行压电超声波自动检测时,常见的缺陷所产生的检测记录波形的特点。每一种缺陷都因自身独特的缺陷特点而具有特殊的检测记录波形,我们可根据超声波检测记录波形的特点大致推断出相应的缺陷类型。但并不是根据每一个超声波检测记录波形都可以准确的判断出其对应的缺陷类型,这仍需得到人为查看或取样分析结果的证实。

本文研究的检测设备是探头旋转式自动超声波检测设备,属压电晶片脉冲反射式水浸探头检测,其检测波形实时自动记录。根据其显示器实时记录的缺陷波形特点,结合轧制工艺特点等来评估缺陷的性质。缺陷的超声波反射特性取决于缺陷的取向和几何形状、有效反射面积、缺陷的表面粗糙度、缺陷性质及所用超声检测系统特性等,因此从实时波形记录中迅速判断出缺陷的性质,这对缺陷的定性评定尤为重要。

一 波高与缺陷有效反射面面积的关系

徐鸿等人[1]阐述了M.J. S.Lowe等人的研究理论:模态波的回波与缺陷周向尺寸成正比关系的结论。从中可以看出钢管中导波的反射系数随缺陷占壁厚的百分比、缺陷占管道周向长度的百分比的增加而增加。进而我们可以得出在相同检测灵敏度下在一定的范围内,缺陷回波的波幅随缺陷的有效反射波的面积的增加而增高。

利用这一结论我们便可以对以下缺陷极其波形特点进行分析。

二 外表面缺陷及其缺陷记录波形的特点

(一) 外折缺陷及其缺陷记录波形的特点

从上图中可以看出外折缺陷的某些特点:

外折通常长度较长(本图外折长约400mm),深度较深(通常远超标准规定的最深1.5mm),且在钢管外表面呈有规律的大螺旋折叠状,折叠面一般不会近似垂直于钢管外表面,与直径方向呈现出较大夹角等。

外折记录波形特点:

1、通常外伤记录伤波整体较宽,无细柱状缺陷波幅,伤波顶处波形呈密集的锯齿状或草丛状。

2、通常外伤记录伤波整体较矮,伤波难以触发剔除报警

3、在与外伤缺陷伤波记录同一位置处,常伴有类似的内伤缺陷伤波记录出现。

由于外折具有以上等特点,虽然外折缺陷远远超标,但检测波幅却未达到自动剔除报警门限,未触发剔除报警。原因就是外折的超声波反射面并不像标准人工伤的那样好,它的有效超声波反射面相对面积较少,探头接收到的超声波回波能量较弱,从而难以触发剔除报警门限,易造成漏检。

适当提高超声波检测灵敏度和操作工的经验水平,加强外检人员的检测能力,或与漏磁、涡流等联合探伤,可避免外折漏检。(二) 外表面裂纹及其缺陷记录波形特点

上图分别为两个裂纹的形貌及其相应的记录波形,从中可以看出裂纹的一些特点:

裂纹通常长度较短(一般在200mm以内),深度较浅(一般都在2mm以内),裂纹纵向延伸一般近似平行钢管长度方向(与钢管长度方向的夹角一般在5度以内),裂纹向管壁内的延伸面与钢管表面的垂直度要远好于外折的状况等。

裂纹记录波形特点:

裂纹缺陷记录波形通常或宽或窄,多数呈针状或锥状,少数为草丛状,超标裂纹缺陷记录波形一般都能触发剔除报警。

较长的裂纹缺陷记录波形与外折的相似,但同一位置处无类似内伤记录波形出现。

未超标的裂纹也会在波形记录上产生一个未触发剔除报警的缺陷记录波幅,此波幅与杂波波幅相似。

由于裂纹的综合有效超声波反射面相对较好,故裂纹的检出率相对较高。由于裂纹取向和深度等综合原因,极少数超标的裂纹会漏检。如图七裂纹,其裂纹向管壁内的延伸面与表面的垂直度较差(其夹角约为40度),故未触发剔除报警,未自动剔除,易造成漏检。但其有效超声波反射面综合状况较好,如裂纹纵向延伸近似平行钢管长度方向,故缺陷波幅仍然较高。

由于裂纹的严重危害性,适当提高检测灵敏度和操作工的经验水平,可避免少数超标裂纹和的漏检,也可将接近裂纹。

(三) 外表面擦伤及其缺陷记录波形特点

此为常见热擦伤之一,从中可以看出此类擦伤的特点:

通常长度较短(一般在20mm左右),深度较浅且极少超标,擦伤纵向延伸一般极好的平行钢管长度方向,擦伤向管壁内的延伸面较好垂直于表面,具有良好的超声波有效反射面。故此类擦伤极易被超声波检测到,但由于其深度较浅且很少超标,故因此类擦伤剔除的管子相对较少。

擦伤记录波形特点:

1. 此类擦伤记录波形通常极窄,呈针状波幅。

2. 此类擦伤记录波形通常波幅较矮,数目较多。

3. 此类擦伤记录波形与杂波及为相似,极易被忽略。

此类缺陷多为钢管热状态时在传输过程中造成,且在后期的热处理工艺中,极易造成在此类缺陷的底部扩展出裂纹来,危害极大,故加大热线设备的检修与维护,杜绝带病作业,是防止此类缺陷产生的根本之道。

(四) 钢管凹面缺陷及其缺陷记录波形特点

凹面缺陷形貌特点:

通常凹面缺陷为表面面积型缺陷,钢管壁呈现外凹里凸的现象,钢管壁无损伤,现场发现的凹面缺陷面积通常较大,凹面缺陷通常造成管子的外径严重变形而判废。

凹面缺陷记录波形特点:

1、通常内外伤同时报警。

2、通常波幅高度为100%。

造成凹面缺陷的原因通常是在热状态下,回转臂或拨料器发生电气故障而压迫造成;或由于钢管壁较薄,在吊运、存放钢管过程中磕碰、挤压钢管造成。

解决的方法是加强回转臂或拨料器等电气控制元件的维护,在吊运、存放钢管过程中轻吊轻放,钢管堆垛不要过高等。

三 内表面缺陷及其缺陷波形的特点

(一) 凸道或直道缺陷及其缺陷记录波形特点

从图中可以看出凸道与直道的特点:

一般其长度较长,约在30cm左右。凸道呈现或宽或窄的条状缺陷,直道呈现细直的线状。缺陷两侧的反射面较为平齐,深度变化幅度较小,缺陷取向几乎平行于钢管轴心线,超声波反射面较好。

凸道或直道的记录波形特点:

1、缺陷波幅通常较宽,波形较为清晰、整齐。

2、波峰处呈锯齿状过度,很少有锯齿状波从峰顶延伸至基准波高。

3、通常两内伤波波幅高度相差无几。

在实际产生中通常凸道较多,直道发现较少。但就危害而言,在热处理后,直道危害较凸道大。在目前分析中,热处理后的直道底部通常都伴有或深或浅的裂纹。故凸道可做内修磨处理,不建议直道进行内修磨。

由于凸道、直道是在轧制过程中由于芯棒掉肉或粘上某种熔 渣而形成的,故改善硼砂、石墨质量,更换新芯棒或对出现问题的芯棒进行修复是避免此种缺陷根本方法。

(二) 内表面淬火裂纹及其缺陷记录波形特点

此裂纹较为特殊,产生原因目前还不确定,但我们可以知道其一些较明显的特点:

裂纹长度通常较短,一般长度在2cm左右;深度较深,通常在0.5mm以上;裂纹面与管壁的垂直性较好,裂纹取向与管子中心轴线平行度相对较好,具有极好的超声波反射面;多数情况下,此缺陷以多点的形式出现在钢管内表面,在圆周方向无规律,但在钢管轴线方向确呈一定规律分布。

短裂纹记录波形的特点:

1、报警波波峰清晰,尖锐有力。

2、每个报警波波幅较窄,呈现针状。

此缺陷产生的直接原因目前还没有确认,但确认由热处理产生。对于此类裂纹,在切除后不够长度要求的前提下不建议进行内修磨,建议直接判废。

四 结束语

无缝钢管的缺陷种类众多【2】,超声波检测各类缺陷仅依赖于超声波的反射特性。相同条件下,超声波反射特性越好,接收到的回波信号就越强。由于各类缺陷都具有不同的超声波反射特性,因此我们就可以利用回波信号对缺陷进行较准确的定量、定位和定性。这对无缝钢管的在线连续生产检测意义重大。

本文所总结的关于缺陷及其波形的特点仅仅是众多缺陷中较为常见的几种,由于实际生产中钢管缺陷的形状千变万化,所以仍然需要我们质检工和探伤工的共同努力,来提高无缝钢管的产品质量,为国家和人民做出自己的贡献!

参考文献

[1]徐鸿, 王冰, 姜秀娟.材料损伤的超声导波无损检 测.2008.35(6):77~82

[2]庄钢,尹溪泉.连轧无缝钢管产品缺陷(欠)分析.钢管.2006,35(6):26~29

——摘自《2017年冶金UT3级培训班优秀论文》

作者:周 永(包钢钢管公司)

未经许可,严禁转载,欢迎分享到朋友圈...

查看详情

铝合金铸件射线照相检测—缺陷分级编制进程

2018年7月13日,《铝合金铸件射线照相检测—缺陷分级》发布。

2018年8月1日,《铝合金铸件射线照相检测—缺陷分级》实施。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639