选择特殊符号
选择搜索类型
请输入搜索
汽液两相流疏水器是应用"两相流理论""控制流体理论"开发的新一代节能环保产品,在火力发电机组运行中,为了提高蒸汽系统的效率和保证蒸汽设备的安全和经济运行,应当尽可能地提高蒸汽的品质。
差别为什么如此悬殊?这与日本缺乏能源资源是有关系的,以日本火电机组为例与国产机组比较,我们发现主要有以下两个原因:
1.1与国家的能源政策和观念有关
日本因为缺乏能源资源,能源的危机感促使日本在各个领域里都极为重视节能降耗。疏水器属于节能产品,因此不仅其疏水器技术领先于欧美国家,疏水器在蒸汽系统上的应用也是最广泛、数量最多的(例如河北省三河发电厂两台三菱300MW级机组总共装置了近五百只疏水器),政府在疏水器之类节能产品的应用上都有具体的鼓励政策,能源的危机感促使日本在各个领域里都极为重视节能降耗工作,其节能技术在世界上是处于领先地位的。
我国以往的观念是"地大物博"、"物产丰富",虽然在扭转这种观念,人们对节能逐渐有了新的认识。但火电厂长期以来只注意安全生产,忽略经济运行,致使对节能工作重视的不够,象疏水器这样的小东西更是无人问津。
1.2疏水器性能的认识不到位
国内相当一部分人认为"疏水器装的越多泄漏点越多"。我们曾发现有的电厂把许多疏水器拆下并将疏水管口封死,原因是疏水器的泄漏已经影响了出力。因此有些电厂宁可用截止阀或球阀来代替疏水器,谑称自动疏水器是"自动漏水器",所以国产机组应用自动疏水器较少。
二、汽液两相流疏水器
该水平处于国内领先地位。在基本原理基础上,技术创新实现上达到了重大突破,其独特的相变管(信号管)直接与本体连接方式、双喉口结构等设计思想解决了早期产品液位控制精确度不高、信号不准确的问题,同时,降低了调节汽量,减弱了后部管线的汽蚀及振动,尤其在300MW、600MW及以上机组效果更为显著。
液位自动调节系统主要由调节器和相变管构成,调节器信号口通过相变管直接与被控制容器相连通。液位自动调节系统信号的采样在被控制容器内直接采集。
调节器由汽室和阀芯构成,阀芯是渐扩结构。这种分段式双喉口独特设计,使本装置信号采集更准确,控制灵敏度更高,调节幅度显著加宽。
三、汽液两相流疏水器工作原理
汽液两相流疏水器经特设的前端阀芯受阻后,进入阀腔内部,容器内液位缓缓上升到相变管接口处,相变管由汽相信号转变为液相信号。此时,前端疏水与液相管疏水混合,向特设的后端喉部流动。(后端阀芯为控制扩压端)由于喉口面积设定不变,当液位上升到所需正常水位时,疏水排量最大;当液位降低时,用汽量信号增加,进入调节器内部,使喉部疏水的有效通流面积减小,疏水排出量减少,从而达到控制水位目的。调节器内汽量的多少决定疏水排量的大小,而调节汽量由加热器内液位的高低决定,通过相变管(信号管)采集,达到调节水位目的。
四、汽液两相流疏水器技术特性
汽液两相流疏水器结构不同:
原有同类产品是整体阀芯,GH10型汽液两相流疏水器是分段式阀芯,该产品最主要的关键部位是阀芯的孔径计算。常规的计算方法只是停留在静态状态,及容器运行时,负荷保持不变,水位控制稳定, 可想而知,机组运行时,负荷变化是经常性的,那么,随着负荷的变化,容器的抽汽量发生变化,抽汽冷凝水的量将随之改变,容器内的水位发生变化,固有设计方法已不能满足控制水位的要求,西安国恒节能环保技术有限公司在原有设计计算上,结合疏水器运行现状,在经过大量的计算运行试验的基础上,改进了计算方法,将计算中几个重要的参数进行了微积分处理。这样一来,设计出的疏水器可以满足多工况运行要求,机组负荷变化。疏水器的排水量随之变化,但容器内的水位适中处于设定状态。 原有同类产品调节汽管进入阀芯内部的均为汽相信号,汽液两相流疏水器高负荷段时是液相信号,低负荷时是汽相信号,因而降低了调节汽量,减弱了后部管线的汽蚀及振动。
HY-K8型型汽液两相流疏水器控制更精确
原有同类产品汽信号从信号筒采集,从小孔进入调节器,环节多、阻力大,汽信号不准确、信号滞后,从而影响调节器控制的精确度。
HY-K8型型汽液两相流疏水器直接在被控制容器内采集(无信号筒),汽相与液相在混合室充分混合,减少了达到热平衡及压力平衡的时间,因此信号更准确,调节性能更精确。
五、汽液两相流疏水器适应工况变化范围更大
在满负荷最大流量时,原有同类产品和HY-K810型汽液两相流疏水器均能满足生产要求。在低负荷小流量时,原有同类产品进入调节器内的疏水压力和气的压力几乎平衡,由于小汽孔存在,衰减了汽压,进入阀芯内部的汽压略小于疏水压力,汽信号减弱,所以阻碍疏水的作用就弱,调节性能差。
汽液两相流疏水器在低负荷时,由于结构发生变化,进汽方式为环型进汽,汽压不受影响,进入调节器内的汽压高于疏水压力,汽信号准确,阻碍疏水的作用更强,调节性能好。而且液位波动更小、更稳定。
取消信号筒,改为信号管直接采集汽信号,安装更加简单,现场管道布置更加简洁。
HY-K8型汽液两相流疏水器适用范围扩大,对轴封加热器、连排扩容器、热网换热器、闪发罐等工况不稳定及石化、冶金企业等流量小、压力低的设备更加合适。
六、汽液两相流疏水器技术装置组成
Ⅰ.相变管(信号管):其作用是根据液位高低采集汽相、液相信号。
Ⅱ.自调节液位控制器:是控制液位的主要设备。
Ⅲ.旁路阀:为闸板阀,其作用是:修正由于参数提供不准造成的误差。
Ⅳ.入口阀:为闸板阀。
汽液两相流疏水器Ⅴ.汽阀:为闸板阀。
Ⅵ.加热器
Ⅶ.连接短管
七、(一)HY-K8型汽液两相流疏水器设计参数 最大工作压力:≤16MPa;
最大工作温度: ≤455℃;
调节汽用量:约为疏水容积流量的1-3‰;
可通流量:根据最大流量设计。
(二)型汽液两相流疏水器外型图:
汽液两相流疏水器1.壳体材质为#20钢
2.壳体内阀芯材质为优质不锈钢 (C)HY-K8型汽液两相流疏水器外型参考尺寸及重量:
(1) Φ273 Dn250的汽液两相流疏水器外型尺寸及重量(kg): 压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
1.6Mpa L×G×H 320×405×340 Φ=200 115
(2) Φ219 Dn200的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
1.6Mpa L×G×H 297×340×310 Φ=185 85
(三) Φ159 Dn150的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
10Mpa L×G×H 438×315×335 Φ=220 113
6.3Mpa L×G×H 418×295×345 Φ=180 94
4.0Mpa L×G×H 364×270×305 Φ=185 72
2.5Mpa L×G×H 277×270×275 Φ=185 59
1.6Mpa L×G×H 264×250×265 Φ=185 47
(四) Φ133 Dn125的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
10Mpa L×G×H 438×315×335 Φ=220 113
6.3Mpa L×G×H 418×295×345 Φ=180 94
4.0Mpa L×G×H 364×270×305 Φ=185 72
2.5Mpa L×G×H 277×270×275 Φ=185 59
1.6Mpa L×G×H 264×250×265 Φ=185 47
(五) Φ108 Dn100的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
6.3Mpa L×G×H 400×250×321 Φ=180 67
4.0Mpa L×G×H 360×235×287 Φ=165 52
2.5Mpa L×G×H 269×235×257 Φ=165 47
1.6Mpa L×G×H 264×220×225 Φ=165 38
(六) Φ89 Dn80的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
6.3Mpa L×G×H 392×210×287 Φ=180 63
4.0Mpa L×G×H 327×200×240 Φ=165 51
2.5Mpa L×G×H 256×200×214 Φ=165 45
1.6Mpa L×G×H 255×200×210 Φ=165 35
(七) Φ76 Dn65的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
6.3Mpa L×G×H 340×200×265 Φ=180 58
1.6Mpa L×G×H 234×185×205 Φ=165 28
(八) Φ57 Dn50的汽液两相流疏水器外型尺寸及重量(kg):
压 力 长×宽×高 尺 寸 相变管接口法兰尺寸 重量
6.3Mpa L×G×H 367×175×243 Φ=155 39
4.0Mpa L×G×H 284×165×227 Φ=140 35
1.6Mpa L×G×H 220×165×183 Φ=140 20
汽液两相流疏水器相变管选取规格如下:
(一)、正常情况:(厂方不特殊要求)
(1、)汽液两相流疏水器规格为:Ф57、Ф76、Ф89、Ф108、Ф133、Ф159六种。
(2、)汽液两相流疏水器规格与相变管规格统一如下:
Ф159汽液两相流疏水器,相变管选型为Ф89
Ф133汽液两相流疏水器,相变管选型为Ф76
汽液两相流疏水器Ф108汽液两相流疏水器,相变管选型为Ф57
Ф89汽液两相流疏水器,相变管选型为Ф57
Ф76汽液两相流疏水器,相变管选型为Ф57 Ф57汽液两相流疏水器,相变管选型为Ф38
(二)、非正常情况:
(1、)可根据客户实际要求定做;
(2、)特殊定做前,需业务员或工程部人员和客户进行沟通。
八、汽液两相流疏水器特点:
Ⅰ 液位自调节性能强:
极强的调节能力,能够适用于调峰机组和工况变化大的设备,满足机组负荷变化30%--100%,水位波动控制在正常水位的±50mm以内。
Ⅱ 可靠性高,免维护:
无机械活动部件、无气动、电动控制系统,设计原理先进,可靠性高,具有免维护的突出特点。
Ⅲ 无泄漏,安全性高:
本装置全密闭结构,无任何活动泄漏点,出厂前严格按国家标准进行打压和探伤等检验过程。
Ⅳ 寿命长:
内芯采用优质不锈钢材料,能满足设备长期运行的要求,设计使用寿命10年。
Ⅴ 缓解汽蚀现象:
液位控制稳定,大大缓解了管道内汽蚀和振动现象。
Ⅵ 易安装:
本装置无需电气控制系统,系统简化,便于现场安装。
Ⅶ 适用性强:
对于工况变化较大,流量较大的各类换热、扩容设备均可适用
九、汽液两相流疏水器的正确选择
选择疏水器时,不能单纯从最大排放量选择,应特别注意:"绝不允许只根据管径大小来套用疏水器" 。而必须根据疏水器选择原则并结合凝结水系统的具体情况来选用。一般情况下,应按以下三个方面选用。
首先根据加热设备和对排出凝结水的要求,选择确定疏水器的型式。
对于要有最快的加热速度,加热温度控制要求严的加热设备,需保持在加热设备中不能积存凝结水,只要有水就得排,则选择能排饱和水的机械型疏水器为最好。因为它是有水就排的疏水器,能及时消除设备中因积水造成的不良后果,迅速提高和保证设备所要求的加热效率。
对于有较大的受热面,对加热速度、加热温度控制要求不严的加热设备,可以允许积水,如:蒸汽采暖疏水、工艺伴热管线疏水等。则应选用热静力型疏水器为最好。
对于中低压蒸汽输送管道,管道中产生的凝结水必须迅速完全排除,否则易造成水击事故。蒸汽中含水率提高,使蒸汽的温度降低,满足不了用汽设备工艺要求。因此,中低压蒸汽输送管道选用机械型疏水器为最好。
十、结束语
近些年来国内火电站的运行和管理水平在不断提高,但是距国外先进国家尚存在着一定的差距,特别是在节能方面。蒸汽是火电站的功能传递的最主要载体,如何提高蒸汽的品质、提高蒸汽的热效率,是"革新挖潜"、"节能增效"的有效途径。蒸汽自动疏水器对于蒸汽系统是必不可缺的,因此,进一步了解疏水器、正确选择和应用疏水器,对技术人员及管理者都有非常现实的意义。
虽然在老机组改造、新建、扩建工程中选用TLV阀需花费大量资金,但据国外有关资料对设置疏水器的经济性进行统计表明,一般在半年内的节能效益可以收回投资疏水器的全部费用,因此,可以说在蒸汽系统上设置疏水器实际上是一项高回报的投资行为。
在石化、化工、纺织、轻工、电力等行业,都大量地使用蒸汽。及时排除蒸汽系统中的凝结水、减少蒸汽的泄漏;提高蒸汽使用设备的热效率等问题。得到了各门的普遍重视,蒸汽疏水器就是解决这些问题的主要装置。疏水器也称疏水阀,也称自动排液器,它是用在蒸汽加热设备或蒸汽输送管网上,起自动阻汽排水作用的装置。汽液两相流疏水器。
汽液两相流疏水器是应用"两相流理论""控制流体理论"开发的新一代节能环保产品,在火力发电机组运行中,为了提高蒸汽系统的效率和保证蒸汽设备的安全和经济运行,应当尽可能地提高蒸汽的品质。然而实际的蒸汽系统中经常会有凝结水及空气的存在,影响蒸汽系统的效率及安全。我们应当设法经常地、及时地将蒸汽中的凝结水及空气(包括其他不可凝气体)排出来,挖掘在用设备潜力,达到节能增效的目的。在这方面国内与国外的差距是非常大的,我国从日本三菱、日立公司进口的机组中每台机组约有200多只蒸汽自动疏水器,欧美机组包括俄罗斯机组也都有较多的疏水器。而国产同类机组几乎很难找到一只疏水器,在一些凝结水较多的部位采用截止阀疏水,并规定一定的时间间隔去人为操作阀门启闭。因为无法判断凝结水的具体情况,一般不是造成凝结水的积存就是造成蒸汽的浪费。
专利名称:二相流泵的制作方法技术领域:本实用新型二相流泵涉及离心泵和真空泵组合在一起的二相流体复合泵领域。技术背景以往采用离心泵输入液体、排出液体,然后,通过真空泵吸入同一介质气 体、排出同一介质气体...
【疏水器】正名为疏水阀,也叫自动排水器或凝结水排放器,用于自动排除管道低处、油水分离器、气罐及各种过滤器底部等处的冷凝水。可安装于不便进行人工排污水的地方,如高处、低处、狭窄处。并可防止人工排水被遗忘...
汽液两相流疏水调节器在高加疏水器改造中的应用
本文针对兴隆庄电厂3#高加疏水器存在的问题,采用新型汽液两相流疏水调节器,成功进行了技术改造,达到了环保、节能、安全运行的目的。
锅炉内螺纹管汽液两相流摩擦压降特性试验研究
在压力为8~10 MPa、质量流速为350~600 kg/(m2.s)、含汽率为0~1的工况范围内,对直径为38.1 mm、壁厚为7.5 mm的六头内螺纹管中汽液两相流体的摩擦压降特性进行了试验研究,试验段采用水平绝热布置。试验结果表明:压力对两相流摩擦压降的影响很大,两相流摩擦压降倍率随压力增加而减小,在临界压力附近趋近于1;两相流摩擦压降倍率随含汽率增加而先增加,然后有减小的趋势;两相流摩擦压降倍率也随质量流速增加而减小。并对用于计算汽液两相流体摩擦压降的试验关联式中的B系数进行了讨论。
某锅炉空冷机组中设置了暖风器系统,其暖风器主要是由辅助蒸汽供给,使用的是蒸汽侧调节,工作过程中,疏水经过汽液两相流疏水器于疏水母管中汇集。根据水质以及设备的情况作为基础,结合具体的需求对其水压疏水差压问题等进行考虑。
具体来说,首先基于疏水差压的考虑,暖风器的气源主要来自于4段抽汽。
对于暖风器管来说,其内凝结换热压力决定于系统的阻力及疏水背压,假如接入低加,则会因汽侧的压力大使得管束内的蒸汽压力变的很高,假如使用蒸汽侧调节,则由于调节阀前后差压的降低,使其特性变差,如果使用疏水侧调节,则比较好一些。
在工程中,由于使用的为蒸汽侧调节,所以,对接入低加汽侧并不考虑。以原系统作为基础,增设输水接入点,也就是输水可以按三路排放到定排扩容器、排汽装置以及低加。
一般来说,经济性最好的是接入除氧器这一方式,但是在实际的运行过程中发现,这种方式的经济效益和预期并不符合,不仅如此,其对于水泵可靠性的也就也非常高,这就意味着如果水泵的性能并不是很理想,则会导致更差的经济效益。
某锅炉空冷机组中设置了暖风器系统,其暖风器主要是由辅助蒸汽供给,使用的是蒸汽侧调节,工作过程中,疏水经过汽液两相流疏水器于疏水母管中汇集。根据水质以及设备的情况作为基础,结合具体的需求对其水压疏水差压问题等进行考虑。
具体来说,首先基于疏水差压的考虑,暖风器的气源主要来自于4段抽汽。
对于暖风器管来说,其内凝结换热压力决定于系统的阻力及疏水背压,假如接入低加,则会因汽侧的压力大使得管束内的蒸汽压力变的很高,假如使用蒸汽侧调节,则由于调节阀前后差压的降低,使其特性变差,如果使用疏水侧调节,则比较好一些。
在工程中,由于使用的为蒸汽侧调节,所以,对接入低加汽侧并不考虑。以原系统作为基础,增设输水接入点,也就是输水可以按三路排放到定排扩容器、排汽装置以及低加。
一般来说,经济性最好的是接入除氧器这一方式,但是在实际的运行过程中发现,这种方式的经济效益和预期并不符合,不仅如此,其对于水泵可靠性的也就也非常高,这就意味着如果水泵的性能并不是很理想,则会导致更差的经济效益。
蒸汽喷射式混合加热器、蒸汽喷射式热泵、喷射式混合加热器、生水加热器、喷射混合式生水加热器、抽吸射液式混合加热器、汽水混合加热器、高效汽水加热器、管式生水加热器、动平衡式液位自调节器、定排排汽回收设备、定排排汽回收系统设计及总包、乏汽回收装置、乏汽回收系统设计及总包、除氧器排汽回收装置、热力站设计总包、换热机组、余热余汽回收、汽液两相流疏水器、汽汽引射器、凝结水回收泵、汽液混合加热器、凝结水回收装置、疏水扩容器排汽回收、连续排污扩容器、定期排污扩容器、热力除氧器、射水式混合加热器、减温减压器、蒸汽喷射器、减温器、分水器、软水器、疏水阀、球磨机节能控制装置、冷凝水回收泵、射液式汽液混合加热器、烟气换热器、汽液两相流疏水调节装置、板式换热器、除氧器乏汽回收、高温凝结水回收、闪蒸罐闪蒸汽回收、反应釜排汽回收、蒸球排汽回收等。