选择特殊符号
选择搜索类型
请输入搜索
在整个测量系统中,容栅传感器的主要作用是把机械位移量转变成电信号的相位变化量,然后送给测量电路进行数据处理。容栅传感器通过精密电压比较器 TLC354进行控制,由继电器供电,由CPU89C52提供所需的激励信号,同时接收其感应信号,并通过鉴相型电路测量出激励信号与感应信号的相位差,经过一系列的变化,即可得出活塞移动的长度距离。
容栅传感器相对于其他类型的传感器有许多突出的优点:
1、量程大、分辨率高。在线位移测量时,分辨率为2mm时,量程可达到20m,在角位移测量时,分辨率为0.1°时,量程为4096圈。其测量速度也比较高,测量线速度可达到1.5m/s。
2、容栅测量属非接触式测量,因此容栅传感器具有非接触传感器的优点,诸如测量时摩擦阻力可以减到最小,不会因为测量部件的表面磨损而导致测量精度下降。
3、结构简单。容栅传感器的敏感元件主要由动栅和静栅组成,信号线可以全部从静栅上引出,作为运动部件的动栅可以没有引线,为传感器的设计带来很大的方便。
4、配用专用集成电路的容栅传感器是一种数字传感器,和计算机的接口方便,便于长距离传送信号,几乎无数据传输误差。数据更新速率可以达到每秒50次。
5、功耗极小。正常工作电流小于10mA,传感器敏感元件可以长期工作,一粒钮扣电池可以连续工作1年以上。利用这个特点,可以设计出准绝对式的位移传感器。
6、在价格上有很大优势,其性能价格比远高于同类传感器。
本系统中主要是对直线位移的测量,所以采用直线型容栅传感器。容栅传感器的结构非常类似于平行板电容器,它是由一组排列成栅状结构的平行板电容器并联而成的,如果把随时间变化的周期信号,通过电子电路的控制,在同一瞬间以不同的相位分布,分别加载于顺序排列的栅状电容器各个栅极上,则在另一公共极板上,任一瞬间产生的感应信号将与该瞬间加载的激励信号具有相同的相位分布。
这个概念我觉得看怎么理解了,这些传感器应该统属于光学传感器,你所说的三个概念相互之间都有交叉,光栅传感器里面包括,光纤光栅,透射体光栅等,也就是既有光纤的也有光电的,光纤传感器又分为功能型和非功能型,...
传感器是指将难以、运算的非电量信号转换为容易、运算的转换元件,所有具备此功能的检测装置都属于传感器。传感器模块是指部分型号传感器经设计后具有统一的性能特征、统一的几何尺寸和连接口、统一的输入输出功能接...
传感器节点是采用自组织方式进行组网以及利用无线通信技术进行数据转发的,节点都具有数据与数据融合转发双重功能。传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量...
容栅传感器动栅、定栅各极板之间形成的电容的等效电路,设C1(x),C2(x),C3(x)……C8(x)为动栅上48块极板与定栅上相应极板所构成的电容量,它是位移x的函数,假设小发射极板与反射极板完全覆盖时两者之间的电容为C0,每一块小发射极板的宽度为w,当0≤x≤w 时,C 8(x)=C 0(x)/w,C 1(x)=C 2(x)=C 3(x)=C 0,C 4(x)=C 0(1-x/w),c5(x)=c6(x)=c7(x)=0。由此可以得出整个量程中两极板之间的电容量随位移x的变化规律。
在x为任何值时,动栅上的48块极板中总有一部分与“地”(屏蔽板)形成电容,相应的输入信号源直接接入“地”,对传感器的输出信号不产生影响,可是为了导出φ(x)(φ(x)为传感器的输出信号相对于某一驱动信号的相位移)随位移量x连续变化的统一公式,在推导中不考虑这些极板对“地” 形成电容,而仍把它们看作对定栅板形成电容,只不过此时它们的电容量为零而已。由于这些电容量为零,则其阻抗为无穷大。相应的信号源全部落在这些电容上,同样,对传感器的输出信号无影响。
如果给容栅传感器每组发射极板上所加的发射电压V1~V8为8路频率、幅值相同而相邻小极板间相位相差为π/4的正弦交变电压,则在发射极上有电压Vf,在接收极上有电压Vr。应用交流电路理论及基尔霍夫电流定律,解读图l的等效电路,如下:
如果用Vo表示各发射极电压的幅值,并取8路信号中的第1路信号的相位为参考值,则有:
其中φ0为V1的相角。
将上述各量及Ci(x)(i=1,2,…,8)代入以上两式,即得
可见,容栅传感器的输出电压是一频率与发射电压相同的正弦电压,其幅值在很小范围内变化,可近似看作一常数,而相位比V1超前了π/4 φ(x)。相位移 φ(x)可采用鉴相型测量电路测出,即可得到相对位移x,可见容栅传感器是一种相位跟踪型的位移传感器,这种传感器对输入信号的幅值变化不敏感,故具有较好的抗干扰能力。
容栅传感器有最主要的问题是稳定性和可靠性,环境潮湿和外界电磁干扰的影响尤为显著,其次作为准绝对式传感器在长期断电工作时,需要定期更换电池,所以难于作为传感器用于长期自动测量。
容栅编码器是以脉冲数字量来表示容栅传感器敏感元件间相对位置信息,本文研究的容栅旋转编码器将容栅全部的结构密封在金属壳内,大大提高了容栅传感器的电磁兼容性和抗环境污染能力,为容栅原理用于自动测量奠定了基础。
磁翻柱液位计中容栅传感器电容极板的优化设计
设计了一种新型容栅传感器,使磁翻柱液位计在更广泛的工况条件下,仍能准确地测量液位值并实现电信号远传.采用Hybrid-Trefftz有限元方法建立传感器中电场的数学模型,并精确地计算出磁翻柱翻转所引起的电容相对变化量.以此电容相对变化量为目标函数,分别对4种不同形状的电容极板和同形状不同结构参数的极板进行定量研究.从电容相对变化量随电容极板结构的变化曲线中,可知形状2且极板间距为5 mm为极板的最优形状.以此结构的样机进行实验,结果表明,此传感器极板结构的优化与实验相吻合,其仿真值与实验值的相对误差仅为3.3%.
容栅式雨量计是水文测验装备中的重要仪器之一,是通过容栅位移传器检测降雨量的,由于容栅传感器的分辨率是0.01,所以容栅雨量计的计量非常精确。采用上下电动阀控制进水和排水,又使得容栅雨量计在记录降水过程中雨量不流失,从而保证了计量过程的准确性。
所采用的技术方案是:连接管安装在数显千分表的罩壳上端,液晶显示仪通过连接电缆与数显千分表连接,可换测头组件安装在数显千分表的左端,其右端安装专用护桥组件及测头。连接管的直径和长度可根据被测内孔的深度而变化,其长度可达10米。容栅传感器将深孔内径的测量结果直接显示在液晶显示仪上。适用于深孔内径加工的精密测量。
1. 在工程测量中,圆弧形半径测量一般采用R规板(也称R规)来比较测量,由于R规样板规格有限,所以只能测出R规样板上具有的标准圆弧形面半径,且为比较测量,无法测出待测工件的实际精确值。其它大部分非标准圆弧(R样板上不具备的规格)是无法进行精确测量的。另外,R样板规格较多,在实际测量中需花很长时间方能选中合适规格的样板,测量效率极低。本专利产品采用容栅传感器、集成电路等高新技术成果,将机械、电子技术、计算机技术以及传感器技术有机结合,开发出新一代具有高科技含量的圆弧形半径测量仪,该专利产品可测出任意规格的圆弧形面半径实际值,操作简洁、读数快,数显半径规具有体积小、读数方便、手持式测量的特点,可用于机械零件木模建筑钢模等有圆弧测量的地方使用。
2. 本测试仪采用多套测爪设计,针对不同的圆弧形面半径和测量精度选用合适跨距地测爪。
3. 多种用途:
1)数显百分表功能;
2)外圆弧形面半径测量;
3)内圆弧形面半径测量;
4)深度测量;
5)台阶测量;