选择特殊符号
选择搜索类型
请输入搜索
利用热释电材料的自发极化强度随温度而变化的效应制成的一种热敏型红外探测器。
布置在桥架里的是线形感温探测器,感烟的都是点型的,早的时候用的是多烟感、温感之类的就是典型的啊,红外对射的就是线型的。
附图,按烟感探测器,修改主材就可以
对浓度的检测要求不同 。
热释电探测器 (2)
热释电探测器 (2)
多元红外探测器
multi-element infrared detector
由多个单元红外探测器按一定规则排列而成的线列或面阵器件,有时也称为多元阵列器件。多元探测器可由光电导探测器或光伏探测器组成,也可以由热释电型探测器组成,主要用于红外成像系统。利用光刻、离子蚀刻等半导体工艺技术,可在组分均匀、结构完整的单片半导体材料上制成一维线列或二维面阵,或以其他几何方式排列的多元探测器。也可以用镶嵌的方式制成多元探测器。常用的多元探测器的形状有6×8二维面阵、20元竖线列阵和16元横线列阵。采用多元探测器的优点是:①提高成像系统的信噪比。如采用n元探测器线列器件实行并扫,则成像系统的信噪比可比使用单元探测器提高倍;②降低对探测器性能的要求。由于探测器元数增加而扫描一幅图像的时间不变,像元在每个敏感元上的滞留时间可增加到单元器件的n倍,从而使一些响应时间较长的探测器能得到应用;③降低成像系统的扫描速度,简化扫描机构。当多元面阵器件的元数与像元数相等时(即"凝视"器件),成像系统可免去机械扫描机构。
多元探侧器又称多元红外探测器,由多个单元红外探测器按一定规则排列而成的线列或面阵器件,是一种新型的探测器,探测器接收到经过衰减的红外信号,经过放大、滤波后判定视场中是否存在目标。有时也称为多元阵列器件。多元探测器可由光电导探测器或光伏探测器组成,也可以由热释电型探测器组成,主要用于红外成像系统。改进其信号处理方法,可以提高探侧器的探侧距离,使得导弹可以在更远距离上发现目标。但在远距离上,探测器接受到的信号很弱,如何在保持低虚普率的条件下,提高红外系统的发现概率是一个急需解决的间题。可采用多元探侧器的导引头信号处理方法,提高其在中远距离上对目标的检测性能。
随着红外技术应用的扩大,以及抗干扰能力的增强,对多元阵列的要求也越加迫切。它除去能使红外装置减轻重量,缩小体积,提高可靠性等优点外,主要还有如下特点:
1.视场大,可提高探测精度,提高信噪比
目前为了提高探测目标的探测能力,通常使用几个乃至成百个多元探测器阵列来代替单个器件。它与简单的光学扫描技术相结合,比单个器件能提供较高的灵敏度和较大的视场范围。过去,为了扩大视场,探测器要使用大量的设备或者要提高转换率,方能提高器件的信噪比,现在用多元阵列连续探测一个较宽的视场,一方面可提高大视场单个探测器的信噪比,同时又可不用复杂的机械扫描,省去很多设备。与探测同样大小视场的单个器件相比,探测灵敏度提高杯√N(N为元件数),即信噪比与探测元件数的平方根成正比。
2.动态范围大,可进行多目标跟踪
多元镶嵌器件在整个使用波长具有较高的灵敏度,能跟踪多目标,动态范围大。由几个元件组成的线性阵列可改进探测精度及抑制干扰源等能力,两维镶嵌阵列能进行边跟踪、边扫描,可在跟踪多目标的同时,连续搜索其它目标。这种不用扫描的传感装置具有1,000个PbS探测器阵列和紧凑的微型电路。据称,这种装置有可能用在美帝647预警卫星上。
3.可提高抑制背景的能力
对遥远的目标来说,探测器在光学系统视场内,从背景接收的辐射显著超过从目标接收的辐射,但目标是一个点辐射源,所以有可能用多元阵列来区别背景辐射。多元阵列装置可提高信噪比并在瞬时视场内准确提高目标位置。
4.提高帧速率,扩大作用距离,不用机械扫描
过去用单个元件要在水平和垂直方向扫描,需用复杂的棱镜,而且得不到帧速率、分辨率和灵敏度很高的图象。单个系统在阴极射线管上显示的速度仅16帧/秒,现用10个77°KInsb线性阵列,只要在水平方向机械扫描12次,就可得到120条线图象,扫描速率达47帧/秒,能分辨小于0.2°C的温差目标。
过去热成象用单个元件进行两维机械扫描,需半分钟才建立图形,角分辨率为1.7毫弧度,噪声等效温度为0.1°C,现用128个元件组成一维阵列,用一维机械扫描,整个图形在一秒钟内建立,由100线组成,角分辨率为2毫弧度,噪声等效温度为1°C。制成单片热电器件阵列的热成象系统,能使可见光、红外辐射和X射线成象,成象速率为30帧/秒,原用5x5个元件,现正设计2500个点元件的大规模器件。目前的前视红外系统探测阵列有几百个元件组成,以后发展将有上千个或更多的探测元件,这将增大信息速率,扩大系统的作用距离,并改进角视场。据报导,现已能获得46公里的远距成象。由于军用要求灵敏度高、设备简单、可靠,尽量不用复杂的机械扫描,现用一维阵列一维机械扫描。若用两维多元阵列,两维取样,就可省去机械扫描。
近年来,国外很重视多元阵列的研制,其原因是:
1)红外系统的发展,它要求更灵敏和能集中大量目标数据和提高信息接收速率,并要求系统尺寸小、重量轻、可靠性高及功率损耗小,这用单个元件是很难达到的。因此,国外从六十年代初期就着手研制多元器件。目前在红外多目标搜索、跟踪、制导和成象及卫星地平仪等方面都已见应用;
2)多元探测器阵列的制造表明了探测器材料和工艺发展到一个新的水平,也可以说是工艺和结构上的一次变革。虽然目前单个元件的水平很高,但不适应于当前系统要求均匀的高密度排列,而多元阵列却可满足这一要求。元件体积缩小、密度提高、焊点减少、互连引线缩短,使可靠性、开关速度大大改善,实现了材料、元件和电路三位一体。目前在红外器件中已应用光刻技术和蒸发工艺。
今后,红外器件的发展是使传感器这一级具有更多的功能。最好是将器件阵列、冷却、放大、开关、信号处理、光谱滤波等都合并到传感器这一级上。
这类探测器,按所测物理量的不同除热释电型探测器外,还有下列三种:
① 温差电型红外探测器:用两种不同的半导体或金属细线,两端分别连接组成电偶。其一端与一涂黑薄片相连。当黑片吸收红外辐射温度升高时,电偶中产生温差电动势,以此电动势度量红外辐射的强弱。
② 气动型红外探测器:也称高莱管,为M.J.E.高莱于1947年所发明。其原理是气体密闭在柔软的室内,室壁的涂黑部分吸收红外辐射,使气体温度升高而发生体积膨胀,光杠杆和光电池将微小的体积膨胀转变成电导的变化,用以度量红外辐射的强弱。
③ 热敏电阻型红外探测器:用氧化物半导体制成很小的薄片,表面涂黑。当薄片吸收红外辐射而温度升高时,电阻发生变化,用电阻的改变量度量红外辐射的强弱。