选择特殊符号
选择搜索类型
请输入搜索
色散力存在于一切分子之间。色散力与分子的变形性有关,变形性越强越易被极化,色散力也越强。稀有气体分子间并不生成化学键,但当它们相互接近时,可以液化并放出能量,就是色散力存在的证明。
量子力学计算表明,色散力与分子变形性有关,变形性越大,色散力越强。由于各种分子均有瞬间偶极,所以色散力存在于极性分子和极性分子、极性分子和非极性分子以及非极性分子和非极性分子之间。而且在一般情况下,色散力是主要的分子间力。只有极性相当强的分子,取向力才显得重要。
色散力、诱导力和取向力统称为范德华力(分子间作用力)。它是在人们研究实际气体对理想气体的偏离时提出来的。由于随着分子间距离的增大而迅速减小,所以它是一种近程力,表现为分子间近距离的吸引力,作用范围只有几个皮米。其作用能的大小从几到几十焦耳每摩尔,比化学键的键能小1~2个数量级。与共价键不同,分子间力没有方向性和饱和性。分子间力包括三种作用力,由于相互作用的分子不同,这三种力所占的比例也不同,但色散力通常是最主要的。
分子间力有以下特点:①分子间力的大小与分子间距离的6次方成反比。因此分子稍远离时,分子间力骤然减弱。它们的作用距离大约在300~500pm范围内。分子间既保持一定接触距离又“无”电子云的重叠时,相邻两分子中相互接触的那两个原子的核间距之半称原子的范德华半径。氯原子的范德华半径为180pm,比其共价半径99pm大得多。②分子间力没有方向性和饱和性。③分子间力作用能一般在2~20KJ·mol-1,比化学键能(100~600kJ·mol-1)小约1~2数量级。
任何一个分子,由于电子的不断运动和原子核的不断振动,常发生电子云和原子核之间的瞬时相对位移,从而产生瞬时偶极。分子靠瞬时偶极而相互吸引,这种力称为色散力。色散力主要与分子的变形性有关,分子的变形性越大,色散力越强。它存在于一切分子之间。
波分传输为什么有的发端还需要色散补偿?色散补偿在此处的作用是啥?
在通讯系统中,我们希望得到更高的信号速率和更远的传输距离;但在长距离传输时会有非线性效应,这时候就需要加色散补偿模块(DCM),DCM在三个位置可以加:一.预补偿,在信号进入光纤前补偿 二....
z王力散热器质量好么,专业做散热器的技术不相上下,就在配套服务方面,售后服务方面存在较大区别。好的散热器厂家从第一部的测量开始就贴心服务了这样才能选择适合与您的暖气片,散热器安装的位置五花八门,但其效...
供应亚克力扩散板板、PMMA扩散板、PC扩散板、阳光板 加工定制:是 | 型号:XBD-901... | &n...
由于分子中电子和原子核不停地运动,分子的电子云的分布呈现有涨有落的状态,从而使它与原子核之间出现瞬时相对位移,产生了瞬时偶极,分子也因而发生变形。分子中电子数愈多、原子数愈多、原子半径愈大,分子愈易变形。瞬时偶极可使其相邻的另一分子产生瞬时诱导偶极,且两个瞬时偶极总采取异极相邻状态,这种随时产生的分子瞬时偶极间的作用力为色散力(因其作用能表达式与光的色散公式相似而得名)。虽然瞬时偶极存在暂短,但异极相邻状态却此起彼伏,不断重复,因此分子间始终存在着色散力。无疑,色散力不仅存在于非极性分子间,也存在于极性分子间以及极性与非极性分子间。
卤素分子物理性质很容易用分子间力作定性地说明:F2、Cl2、Br2、I2都是非极性分子。顺序分子量增大,原子半径增大,电子增多,因此色散力增加,分子变形性增加,分子间力增加。所以卤素分子顺序熔、沸点迅速增高,常温下F2、Cl2是气体,Br2是液体,而I2则是固体。不过,HF、H2O、NH2三种氢化物的分子量与相应同族氢化物比较明显地小,但它们的熔、沸点则反常地高,其原因在于这些分子间存在氢键。 2100433B
单模光纤的色散
光纤色散 在光纤中传输的光信号(脉冲)的不同频率成份或不同的模式分量以不同的速度传播,到达一定距离后必 然产生信号失真(脉冲展宽),这种现象称为光纤的色散或弥散。 光纤中传输的光信号具有一定的频谱宽度,也就是说光信号具有许多不同的频率成分。同时,在多模光纤 中,光信号还可能由若干个模式叠加而成,也就是说上述每一个频率成份还可能由若干个模式分量来构成。 光纤的色散主要有材料色散、波导色散、偏振模色散和模间色散四种。其中,模间色散是多模光纤所特有 的。 这四种色散作用还相互影响,由于材料折射率 n是波长 λ(或频率 w)的非线性函数, d2n/d2λ≠0,于是不 同频率的光波传输的群速度不同,所导致的色散成为材料色散。 由于导引模的传播常数 β是波长 λ(或频率 w)的非线性函数, 使得该导引模的群速度随着光波长的变化而变 化,所产生的色散成为波导色散(或结构色散)。 偏振模色散指光纤中偏振色
一个形变色散耗散方程的精确解
根据试探方程法的一种解法,获得了一个非线性的形变色散耗散方程的精确解,并给出实际参数得到相应解的具体构造。
由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。从机理上说,光纤色散分为材料色散,波导色散和模式色散。前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。
材料的折射率随入射光频率的减小(或波长的增大)而减小的性质,称为"色散"。
色散可通过棱镜或光栅等作为"色散系统"的仪器来实现。如一细束阳光可被棱镜分为红、橙、黄、绿、蓝、靛、紫七色光。这是由于复色光中的各种色光的折射率不相同。当它们通过棱镜时,传播方向有不同程度的偏折,因而在离开棱镜则便各自分散成了单色光。
光纤的色散主要有材料色散、波导色散、偏振模色散和模间色散四种。其中,模间色散是多模光纤所特有的。
多模传输时,光纤各模式在同一波长下,因传输常数的切线分量不同,群速不同所引起的色散。多模光纤中,以不同角度射入光纤的射线在光纤中形成不同的模式。光纤基本结构中的图画出了三条不同角度的子午射线。其中沿轴心传输的射线为最低次模,其切线方向的传输速度(即群速)最快,首先到达终端。沿刚好产生全反射角度传输的射线为最高次模,其切线方向的传输速度最慢,最晚到达终端。它们到达终端的时间就有差异,模式间的这种时间差或时延差就叫做模式色散,或称模间色散。
多模光纤的色散用光纤带宽(MHzkm)表示,带宽是从频域特性表示光纤色散大小的。
信号不是单一模式会引起模式色散。多模光纤中,模式色散在三种色散中是主要的。
是光纤材料的折射率随频率(波长)而变,可使信号的各频率(波长)群速度不同引起色散。
某个模式本身,由于传输的是有一定宽度频带,不同频率下传输常数的切线分量不同,群速不同所引起的色散。
材料色散和波导色散在实际情况下很难截然分开,所以在许多情况下将这二种色散统称为模内色散。
这四种色散作用还相互影响,由于材料折射率n是波长λ(或频率w)的非线性函数,d2n/d2λ≠0,于是不同频率的光波传输的群速度不同,所导致的色散成为材料色散。
由于导引模的传播常数β是波长λ(或频率w)的非线性函数,使得该导引模的群速度随着光波长的变化而变化,所产生的色散成为波导色散(或结构色散)。
偏振模色散指光纤中偏振色散,简称 PMD(polarization modedispersion),它是由于实际的光纤中基模含有两个相互垂直的偏振模,沿光纤传播过程中,由于光纤难免受到外部的作用,如温度和压力等因素变化或扰动,使得两模式发生耦合,并且它们的传播速度也不尽相同,从而导致光脉冲展宽,引起信号失真。
不同的导引模的群速度不同引起的色散成为模间色散,模间色散只存在与多模光纤中。
色散限制了光纤的带宽-距离乘积值。色散越大,光纤中的带宽-距离乘积越小,在传输距离一定(距离由光纤衰减确定)时,带宽就越小,带宽的大小决定传输信息容量的大小。