选择特殊符号
选择搜索类型
请输入搜索
水蓄冷设计须综合考虑影响初投资及运行成本的各种因素,详尽研究系统的电费,峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。
进行水蓄冷设计时,须准确分析建筑空调负荷特点,并计算建筑物的逐时负荷,然后根据设计负荷的特点和运行策略来确定系统选型和控制策略,目标是尽可能地减少各种设备的装机容量,并达到满足各工作时段的负荷需求,并保证主机效率,充分利用蓄冷装置的优势,尽量减少系统的能耗。进行系统设计时,须结合系统的运行特点,从系统全局的观点来考虑各设备的匹配和综合效能,在设计建模的过程中,需要在满足建筑空调需求的约束条件下,实现运行费用目标函数最小的目标。
水蓄冷设计需要实现满足经济、可靠、灵活、高效的设计要求。评价水蓄冷系统品质的最重要依据是系统的整体效率及运行稳定性。
水蓄冷设计须综合考虑影响初投资及运行成本的各种因素,详尽研究系统的电费,峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。
进行水蓄冷设计时,须准确分析建筑空调负荷特点,并计算建筑物的逐时负荷,然后根据设计负荷的特点和运行策略来确定系统选型和控制策略,目标是尽可能地减少各种设备的装机容量,并达到满足各工作时段的负荷需求,并保证主机效率,充分利用蓄冷装置的优势,尽量减少系统的能耗。进行系统设计时,须结合系统的运行特点,从系统全局的观点来考虑各设备的匹配和综合效能,在设计建模的过程中,需要在满足建筑空调需求的约束条件下,实现运行费用目标函数最小的目标。
水蓄冷设计需要实现满足经济、可靠、灵活、高效的设计要求。评价水蓄冷系统品质的最重要依据是系统的整体效率及运行稳定性。
它具有投资小,运行可靠,制冷效果好,经济效益明显的特点,每年能为用户节省可观的中央空调年运行费用,还可实现大温差送水和应急冷源,相对于冰蓄冷系统投资大,调试复杂,推广难度较大的情况来说,水蓄冷具有经济简单的特点,可利用大型建筑本身具有的消防水池来进行冷量储存,所以水蓄冷技术具有广阔的发展空间和应用前景,其社会效益体现在可以平衡电网负荷,减少电厂投资,净化环境,符合国家产业政策发展方向。
水蓄冷是利用水的显热实现冷量的储存。因此,一个设计合理的蓄冷系统应通过维持尽可能大的蓄水温差并防止冷水与热水的混合来获得最大的蓄冷效率。在水蓄冷技术中,关键问题是蓄冷罐的结构形式应能防止所蓄冷水与回流...
水蓄冷设计须综合考虑影响初投资及运行成本的各种因素,详尽研究系统的电费,峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。进行水蓄...
水蓄冷设计须综合考虑影响初投资及运行成本的各种因素,详尽研究系统的电费,峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。进行水蓄...
水蓄冷技术利用峰谷电价差,在低谷电价时段将冷量存储在水中,在白天用电高峰时段使用储存的低温冷冻水提供空调用冷。当空调使用时间与非空调使用时间和电网高峰和低谷同步时,就可以将电网高峰时间的空调用电量转移至电网低谷时使用,达到节约电费的目的。目前使用最成熟和有效的蓄冷方式是自然分层。
水蓄冷是利用水的显热实现冷量的储存。因此,一个设计合理的蓄冷系统应通过维持尽可能大的蓄水温差并防止冷水与热水的混合来获得最大的蓄冷效率。在水蓄冷技术中,关键问题是蓄冷罐的结构形式应能防止所蓄冷水与回流热水的混合。为实现 这一目的,目前常用的有以下几种方法:
将冷水和热水分别储存在不同的罐中,以保证送至负荷侧的冷水温度维持不变,多个蓄水罐有不同的连接方式,一种是空罐方式。如图1a,它保持蓄水罐系统中总有一个罐在蓄冷或放冷循环开始时是空的。随着蓄冷或放冷的进行,各罐依次倒空。另一种连接方式是将多个罐串联连接或将一个蓄水罐分隔成几个相互连通的分格。如图1b,图中示出蓄冷时的水流方向。蓄冷时,冷水从第一个蓄水罐的底部入口进入罐中,顶部溢流的热水送至第二个罐的底部入口,依次类推,最终所有的罐中均为冷水;放冷时,水流动方向相反,冷水由第一个罐的底部流出。回流热水从最后一个罐的顶部送入。由于在所有的罐中均为热水在上、冷水在下,利用水温不同产生的密度差就可防止冷热水混合。多罐系统在运行时其个别蓄水罐可以从系统中分离出来进行检修维护,但系统的管路和控制较复杂,初投资和运行维护费作较高。
采用隔板把水蓄水槽分成很多个单元格,水流按照设计的路线依次流过每个单元格。图2所示为迷宫式畜水罐中水流的路线。迷宫法能较好地防止冷热水混合。但在蓄冷和放冷过程中有一个是热水从底部进口进入或冷水从顶部进口进入。这样易因浮力造成混合;另外,水的流速过高会导致扰动及冷热水的混合;流速过低会在单元格中形成死区,降低蓄冷系统的容量。
利用水在不同温度下密度不同而实现自然分层。系统组成是在常规的制冷系统中加入蓄水罐,如图3a所示。在蓄冷循环时,制冷设备送来的冷水由底部散流器进入蓄水罐,热水则从顶部排出,罐中水量保持不变。在放冷循环中,水流动方向相反,冷水由底部送至负荷侧,回流热水从顶部散流器进入蓄水罐。图3b是蓄冷特性曲线图。纵坐标为温度,横坐标为蓄水量的百分比。A、C分别为放冷循环时制冷机的回水和出水特性曲线;B、D分别为蓄冷循环时制冷机的回水和出水特性曲线。一般用蓄冷效率来描述蓄水罐的蓄冷效果。蓄冷效率的定义是蓄冷罐实际入冷量与蓄冷罐理论可用蓄冷量之比,即:蓄冷效率=(曲线A与C之间的面积)/(曲线A与D之间的面积)
一般来说,自然分层方法是最简单,有效和经济的,如果设计合理,蓄冷效率可以达到85%-95%。
图4所示为蓄冷罐和斜温层内温度变化简图。斜温层是冷水与热水之间的温度过渡层。明确而稳定的斜温层能防止冷水与热水的混合,但斜温层的存在降低了蓄冷效率。蓄冷系统能否在高效率下保持正常而稳定的工作主要取决于顶部和底部散流器的设计和蓄水罐的设计。散流器用于均布进入罐中的水流,减少扰动和对斜温层的破坏。
在蓄水罐内部安装一个活动的柔性膈膜或一个可移动的刚性隔板,来实现冷热水的分离,通常隔膜或隔板为水平布置。这样的蓄水罐可以不用散流器,但隔膜或隔板 的初投资和运行维护费用与散流器相比并不占优势。2100433B
水蓄冷是利用水的显热实现冷量的储存。因此,一个设计合理的蓄冷系统应通过维持尽可能大的蓄水温差并防止冷水与热水的混合来获得最大的蓄冷效率。在水蓄冷技术中,关键问题是蓄冷罐的结构形式应能防止所蓄冷水与回流热水的混合。为实现 这一目的,目前常用的有以下几种方法:
将冷水和热水分别储存在不同的罐中,以保证送至负荷侧的冷水温度维持不变,多个蓄水罐有不同的连接方式,一种是空罐方式。如图1a,它保持蓄水罐系统中总有一个罐在蓄冷或放冷循环开始时是空的。随着蓄冷或放冷的进行,各罐依次倒空。另一种连接方式是将多个罐串联连接或将一个蓄水罐分隔成几个相互连通的分格。如图1b,图中示出蓄冷时的水流方向。蓄冷时,冷水从第一个蓄水罐的底部入口进入罐中,顶部溢流的热水送至第二个罐的底部入口,依次类推,最终所有的罐中均为冷水;放冷时,水流动方向相反,冷水由第一个罐的底部流出。回流热水从最后一个罐的顶部送入。由于在所有的罐中均为热水在上、冷水在下,利用水温不同产生的密度差就可防止冷热水混合。多罐系统在运行时其个别蓄水罐可以从系统中分离出来进行检修维护,但系统的管路和控制较复杂,初投资和运行维护费作较高。
采用隔板把水蓄水槽分成很多个单元格,水流按照设计的路线依次流过每个单元格。图2所示为迷宫式畜水罐中水流的路线。迷宫法能较好地防止冷热水混合。但在蓄冷和放冷过程中有一个是热水从底部进口进入或冷水从顶部进口进入。这样易因浮力造成混合;另外,水的流速过高会导致扰动及冷热水的混合;流速过低会在单元格中形成死区,降低蓄冷系统的容量。
利用水在不同温度下密度不同而实现自然分层。系统组成是在常规的制冷系统中加入蓄水罐,如图3a所示。在蓄冷循环时,制冷设备送来的冷水由底部散流器进入蓄水罐,热水则从顶部排出,罐中水量保持不变。在放冷循环中,水流动方向相反,冷水由底部送至负荷侧,回流热水从顶部散流器进入蓄水罐。图3b是蓄冷特性曲线图。纵坐标为温度,横坐标为蓄水量的百分比。A、C分别为放冷循环时制冷机的回水和出水特性曲线;B、D分别为蓄冷循环时制冷机的回水和出水特性曲线。一般用蓄冷效率来描述蓄水罐的蓄冷效果。蓄冷效率的定义是蓄冷罐实际入冷量与蓄冷罐理论可用蓄冷量之比,即:蓄冷效率=(曲线A与C之间的面积)/(曲线A与D之间的面积)
一般来说,自然分层方法是最简单,有效和经济的,如果设计合理,蓄冷效率可以达到85%-95%。
图四所示为蓄冷罐和斜温层内温度变化简图。斜温层是冷水与热水之间的温度过渡层。明确而稳定的斜温层能防止冷水与热水的混合,但斜温层的存在降低了蓄冷效率。蓄冷系统能否在高效率下保持正常而稳定的工作主要取决于顶部和底部散流器的设计和蓄水罐的设计。散流器用于均布进入罐中的水流,减少扰动和对斜温层的破坏。
在蓄水罐内部安装一个活动的柔性膈膜或一个可移动的刚性隔板,来实现冷热水的分离,通常隔膜或隔板为水平布置。这样的蓄水罐可以不用散流器,但隔膜或隔板 的初投资和运行维护费用与散流器相比并不占优势。
直接蓄冷混合供冷的水蓄冷中央空调系统分析
为实现移峰填谷,在中央空调系统改造中,设计人员越来越重视水蓄冷技术的应用。本文针对常规水蓄冷中央空调系统存在的弊端,提出直接蓄冷混合供冷的水蓄冷中央空调系统。分析结果表明,利用峰谷电价差值,合理地匹配水蓄冷系统与中央空调系统,能耗成本可节约15%~20%。但过高地要求峰谷电价比,并不能明显提高系统的经济性,反而会制约水蓄冷技术的应用。本文的分析将为水蓄冷系统的实际工程应用提供理论参考。
水蓄冷空调的特点
◆经济
制冷系统的容量只需按照日平均负荷选择即可,通过利用消防水池、原有蓄水设施或建筑物地下室等作为蓄冷容器在避免“大马拉小车”的同时降低了初投资,使用期间单位蓄冷投资随着水蓄冷罐的体积的增大而降低,当蓄冷量大于7000kw.h(603万kcal),或蓄冷容积大于760m3时,水蓄冷是最为经济的。
◆实用
可以使用常规冷水机组,适用于常规供冷系统的扩容和改造。并且能够实现蓄冷和蓄热的双重用途。
◆节能
夜间气温降低,制冷效率随之提高6-8%,系统满负荷运转时间大幅度增加,从而使空调系统的总节电率达10%-22%.
◆合理
作为备用冷源,增加了空调系统的可靠性;结合低温送水和低温送风,降低了设备的噪音;主机在最佳状态下运行;满负荷运行时间增加,部分负荷运行时间减少,节省维护保养费用。
水蓄冷空调的适用场合
水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。
与冰蓄冷技术相比,水蓄冷技术显着节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。
水蓄冷空调的特点:
1、经济
制冷系统的容量只需按照日平均负荷选择即可,通过利用消防水池、原有蓄水设施或建筑物地下室等作为蓄冷容器在避免“大马拉小车”的同时降低了初投资,使用期间单位蓄冷投资随着水蓄冷罐的体积的增大而降低,当蓄冷量大于7000kw.h(603万kcal),或蓄冷容积大于760m3时,水蓄冷是最为经济的。
2、实用
可以使用常规冷水机组,适用于常规供冷系统的扩容和改造。并且能够实现蓄冷和蓄热的双重用途。
3、节能
夜间气温降低,制冷效率随之提高6-8%,系统满负荷运转时间大幅度增加,从而使空调系统的总节电率达10%-22%.
4、合理
作为备用冷源,增加了空调系统的可靠性;结合低温送水和低温送风,降低了设备的噪音;主机在最佳状态下运行;满负荷运行时间增加,部分负荷运行时间减少,节省维护保养费用。
水蓄冷空调的适用场合。
水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。
与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。
1.设计者需掌握的基本资料:当地电价政策、建筑物的类型及使用功能、可利用空间(放置水蓄冷设备)等。
2.确定建筑物设计日的空调逐时冷负荷及设汁日总冷负荷。
3.根据工程项目的实际情况,确定蓄能类型和运行参数。
4.根据建筑物的具体条件,确定蓄冷水池的形状与大小。
5.确定制冷机组和蓄冷设备的容量。
6.确定蓄冷系统的运行模式与控制策略。
7.进行技术经济分析,计算出水蓄冷系统的投资回收期。