选择特殊符号
选择搜索类型
请输入搜索
两线制变送器必须同时满足以下条件:
1.变送器的输出端电压V等于规定的最低电源电压减去电流在负载电阻和传输导线电阻上的压降。
2.变送器的正常工作电流I必须小于或等于变送器的输出电流。
3.P min(E min-I maxRL max),变送器的最小消耗功率P不能超过上式,通常<90mW。
式中:E min=最低电源电压,对多数仪表而言E min=24(1-5%)=22.8V,5%为24V电源允许的负向变化量;I max=20mA;I min=4mA;RL max=250Ω 传输导线电阻。
如果变送器在设计上满足了上述的三个条件,就可实现两线制传输。所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。两线制变送器由于信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。而且两线制还便于使用安全栅,利于安全防爆。
两线制变送器如图1所示,其供电为24V.DC,输出信号为4-20mA.DC,负载电阻为250Ω,24V电源的负线电位最低,它就是信号公共线,对于智能变送器还可在4-20mA.DC信号上加载HART协议的FSK键控信号。
有的仪表厂为了减小变送器的体积和重量、并提高抗干扰性能、减化接线,而把变送器的供电由220V.AC改为低压直流供电,如电源从24V.DC电源箱取用,由于低压供电就为负线共用创造了条件,这样就有了三线制的变送器产品。
三线制变送器如图2所示,所谓三线制就是电源正端用一根线,信号输出正端用一根线,电源负端和信号负端共用一根线。其供电大多为24V.DC,输出信号有4-20mA.DC,负载电阻为250Ω或者0-10mA.DC,负载电阻为0-1.5KΩ;有的还有mA和mV信号,但负载电阻或输入电阻,因输出电路形式不同而数值有所不同。
由于4-20mA.DC(1-5V.DC)信号制的普及和应用,在控制系统应用中为了便于连接,就要求信号制的统一,为此要求一些非电动单元组合的仪表,如在线分析、机械量、电量等仪表,能采用输出为4-20mA.DC信号制,但是由于其转换电路复杂、功耗大等原因,难于全部满足上述的三个条件,而无法做到两线制,就只能采用外接电源的方法来做输出为4-20mA.DC的四线制变送器了。
四线制变送器如图3所示,其供电大多为220V.AC,也有供电为24V.DC的。输出信号有4-20mA.DC,负载电阻为250Ω,或者0-10mA.DC,负载电阻为0-1.5KΩ;有的还有mA和mV信号,但负载电阻或输入电阻,因输出电路形式不同而数值有所不同。
二线制的优点是接线简单,只适用一般功率小的一次传感器,如:压变、差压变、温变、电容式液位计、射频导纳、涡街流量计等。传感器本身用电由二线制中得到,是必影响其带载能力。
三线制的优点是热电阻采取三线制接法,是为了打消衔接导线电阻惹起的丈量偏差。这是由于丈量热电阻的电路个别是不均衡电桥。热电阻作为电桥的一个桥臂电阻,其衔接导线(从热电阻到中控室)也成为桥臂电阻的一部门,这一部门电阻是未知的且随情况温度变更,形成丈量偏差。采取三线制,将导线一根接到电桥的电源端,其他两根分辨接到热电阻地点的桥臂及与其相邻的桥臂上,如许打消了导线线路电阻带来的丈量偏差。
四线制的优点是由于是将电源和功率分开,所以本机的功率与信号是没有功率上的关联的,适用于大功率的的传感器,如超声波(由于其为了加大抗干扰能力,所以发射的功率会很大,所以此款产品选型时要尽量四线的,二线的一般抗干扰能力较弱),就不能作成二线的,只能是四线,分别是工作电源两个,输出两个。
四线制是指电源两根线,信号两根线。电源和信号是分开工作的。即在三线制的基础上,信号线有自己的地,不和电源线共地。
所谓的两线制、三线制、四线制,是指各种输出为模拟直流电流信号的变送器,其工作原理和结构上的区别,而并非只指变送器的接线形式。
几线制的称谓,是在两线制变送器诞生后才有的。这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。因此最先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。DDZ-II型电动单元组合仪表的出现,供电为220V.AC,输出信号为0—10mA.DC的四线制变送器得到了广泛的应用,在有些工厂还可见到它的身影。
七十年代我国开始生产DDZ-III型电动单元组合仪表,并采用国际电工委员会(IEC)的过程控制系统用模拟信号标准。即仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。采用4-20mA.DC信号,现场仪表就可实现两线制。但限于条件,当时两线制仅在压力、差压变送器上采用,温度变送器等仍采用四线制。国内两线制变送器的产品范围也大大扩展了,应用领域也越来越多。同时从国外进来的变送器也是两线制的居多。
3相4线制是指供电方式。A、B、C相加零线共3相电源线和1根零线,称为3相4线制。现在民用电还要加一根地线,称为三相五线制供电。几根线可以由一根多芯电缆接入,但输送应该各自分开。
设两线制压力变送器接线端子为:A电源24V+,B输出4~20mA,四线制仪表接线端子分别为1为电源+,2为电源-,3为输入+,4为输入-。接线:2,4短接 A接1即仪表电源+ B接...
四线:外墙中心线长度、外墙外边线长度、内墙净长线、(建筑高度?)。 两面:建筑面积、基地占地面积
电阻的四线制接法(开尔文四线检测)
开尔文四线检测 Kelvin Four-terminal sensing 开尔文四线检测( Kelvin Four-terminal sensing )也被称之为四端子检测( 4T 检测, 4T sensing )、四线检测或 4 点探针法,它是一种电阻抗测量技术,使用单独的对载电流 和电压检测电极,相比传统的两个终端( 2T)传感能够进行更精确的测量。开尔文四线 检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。也可用 于测量薄膜的薄层电阻。四线检测的关键优点是分离的电流和电压的电极,消除了布线和 接触电阻的阻抗。 四线检测感应也被称为开尔文( Kelvin )检测,威廉 ·汤姆森 ·开尔文勋爵( William Thomson, Lord Kelvin )在 1861 年发明的开尔文电桥测量低电阻。每两线连接,可以称得 上是 Kelvin 连接。 原理 假设我
四线制道岔启动电路断路故障处理
对四线制道岔启动电路断路 故障处理方法的探讨 电动道岔、轨道电路、信号机称为信号设备的三大件,电动道岔又为三大件之首,故障 率相对比其他两项设备多,大量的数据表明,在道岔电路故障中,绝大部分是断路故障。而 处理故障的快与慢直接影响着铁路运输的安全、正点。 在长期的工作实践中,通过学习分析“四线制道岔控制道路”中固有的规律、特点,并 利用这些规律、特点来分析、判断、查找启动电路断路故障,收到了很好的效果。 一、四线制道岔控制电路规律特点 1、规律特点之一: 将室内、外联系线增加到四条,并将电动机原来相串联的激磁绕组(定子线圈)分开使 用。一个作为定位绕组,一个作为反位绕组,使每条线的作用更加明确与专用化,整个电路 显得更加简单、明了。并且不论道岔往定、反位哪个位置操纵,启动电路中的电流方向不会 改变,同样可以达到控制电动转辙机转换道岔的目的。 2、规律特点之二 四条控制线各线的作用分别是:
重复接地
PE线(保护接地线),在用户侧需要重复接地,以提高可靠性。但是,重复接地只是重复接地,它只能在接地点或靠近接地的位置接到一起,但绝不表明可以在任意位置特别是户内可以接到一起。
注意“三相四线”制是带电导体系统分类中的一种, 和接地系统分类无任何关系,应注意避免“三相五线制”这种错误的叫法。 TN-S系统也不是“三相五线制”。任一带电导体系统都可采用任一接地系统。例如三相四线带电导体系统,可采用TN-S接地系统,也可采用TN-C-S或TT接地系统。这三种接地系统的末端都是五根线,都可称作“三相五线制”,那又如何将他们加以区分呢?因此“三相五线制”是一个混淆接地系统和带电导体系统两个互不关联的系统的错误名词,在编制电气规范和设计文件时应注意避免采用。GB16895.1-2008里没有“三相五线制”的提法,只有“三相四线制”。“三相四线制”属于带电导体系统分类中的一种,TN-S系统属于接地系统分类中的一种。
以下图为例,下图中有3根相线,1根N线,1根PE线,但显然不是TN-S系统,而是TT系统。下图的带电导体系统分类属于“三相四线制”,接地系统分类属于“TT系统”。
2100433B
此前介绍过关于E+H变送器二线制的优点介绍,变送器的三线制和四线制变送器都没有二线制的优势,通常都会被代替。下面继续对三线制及四线制进行介绍。
E+H变送器的三线制一般是电压输出,接线一根(红色电源正),一根黑色(电源负),一根黄色(信号输出正)输出的地端于电源相共。E+H变送器四线制的变送器有两根电源线,两根信号线。
E+H变送器的四线制具体工作情况是,电源接24v直流电,简单的检测方法是用一只电流表或电压表,接信号线两端。电源接上后,电流表会有4ma电流或电压表有0v或1V电压。 使用的变送器一般都有4个接线端子,两个是接线的,另外两个不用接线,变送器的DC24V电源线同时就是4~20mA的信号反馈线。也就是说,二次表或者DAS(数据采集系统)的AI点要带DC24V输出。
E+H变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米,甚至可能更远。单片机应用系统中遇到的一个棘手问题就是如何在恶劣环境下远距离可靠地传送微小信号,因为设备现场的环境较为恶劣,强电信号会产生各种电磁干扰,雷电感应会产生强浪涌脉冲。
E+H变送器二、三、四线制的信息内容具体可以查看“E+H变送器二线制的优点剖析”,与本篇文章相结合,查找需要的内容信息,希望对您有所帮助!
文章来源:http://www.whdkm.cn/News_show.asp?id=553
E+H变送器:http://www.whdkm.cn/
一、三相四线制和三相五线制符号含义解答:
(R 黄、S绿、T红、N蓝或黑、地黄加绿双色线)三相五线制
(R 黄、S绿、T红、N蓝或黑色线、)三相四线制
(R 黄、S绿、T红、地黄加绿双色线)三相四线制
三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;属于TN-C接地系统.
三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流);我国民用建筑的配电方式采用TN-S接地系统。
二、三相四线制为何三相五线制多一根线
输电线路三相电源电气连接图
低压配电网电缆中,输电线路一般采用三相四线制,其中 三相四线制
三条线路分别代表A,B,C三相,另一条是中性线N称三相四线制,
三相五线制包括三相电的三个相线(A、B、C线)、中性线(N线);以及地线(PE线),因此区别为多了一条地线。
三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。
三相五线制的学问就在于这两跟"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是0电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险.
零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回大地,在电子电路中这两个概念是要区别开来的,在正规公司里,这两根线规定要分开接.
现在实际中还有一种三相六线的接法,除工作零线,保护接地外,还专门另配一路接地线,这根线跟设备地线分开来接,不与其他任何线相接,用做对仪器设备的保护,因为电气件的损坏往往只几微秒的时间,所以要将误动作电流更快的引回大地,需要仪器直接接地.
在同一用电系统中,绝对不允许同时存在保护接地与保护接零。
在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(该结线的点是: 工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。
三、三相五线制供电的原理
三相五线制供示意图
众所周知,在三相四线制电线电缆供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。
四、对三相五线制敷设的要求
(1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。
(2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。
(3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。
(4) 采用低压电缆供电时应选用五芯低压电力电缆。
(5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。
(6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做保护零线。
五、三相五线制供电的应用范围
凡是采用保护接零的低压供电电线系统,均是三相五线制供电的应用范围。国家有关部门规定:凡是新建、扩建、企事业、商业、居民住宅、智能建筑、基建施工现场及临时线路,一律实行三相五线制供电方式,做到保护零线和工作零线单独敷设。对现有企业应逐步将三相四线制改为三相五线制供电,具体办法应按三相五线制敷设要求的规定实施