选择特殊符号
选择搜索类型
请输入搜索
《机械工程名词 第五分册》第一版。 2100433B
发电机置于流道竖井中的贯流式水轮机。
都有。一般大中型混流式水轮机组肯定是立式的。小型机组多为卧式的。
冲击式水轮机是借助于特殊导水机构引出具有动能的自由射流,冲向转轮水斗,使转轮旋转做功,从而完成将水能转换成机械能的一种水力原动机。在冲击式水轮机中,以工作射流与转轮相对位置和做工次数的不同,可分为切击...
混流和轴流式水轮机都属于反击式水轮机,其主要区别是水流的流向,混流式水轮机是径向流入,轴向流出,轴流式水轮机是轴向流入,轴向流出。其余的区别挺多的,比如使用水头范围,叶片数目,机组构造,相应的运行方式...
竖井贯流式水轮机组的设计
为了更好地开发、推广竖井贯流式水轮发电机组,对其总体布置、水力性能、结构特点进行了介绍,并针对机组选型参数、流道设计原则、主轴临界转速等提出了几点建议。
贯流式水轮机增容改造
某水电站设计水头6.8 m,设计流量75 m3/s,设计装机3×1250 kW贯流式水轮发电机组3台。由于水轮机设计、制造和装配存在问题,造成设备实际出力与设计出力不符,经过对设备技术数据测试和增容改造方案分析比较,确定对水轮机转轮、导水和转动部件的轴、轴承、水封等部位实施改造。现增容改造后水轮机单机最大出力由原891 kW提高至1 292 kW左右,年发电量由原1276万kWh提高至1803万kWh,年发电收入由原382.8万元增加至540.9万元左右,设备运行良好,效率高,电站经济效益和社会效益得到有效提高。
贯流式水轮机,根据其结构特点和布置型式,可分为全贯流式、半贯流式(又分为竖井式、轴伸式和灯泡式)两种,其适用范围各不相同 。
全贯流式机组则把发电机转子装在旋转的水轮机转轮轮缘上,发电机定子固定在流道外面周围的支承上。
全贯流式机组转动惯量大,能保证机组的稳定运行,避免频率波动,对水头变化较为频繁的潮汐电站更为有利。同时其流道和机组布置形式适合于可逆式机组,还可用于抽水蓄能,将径流式梯级电站的上下游水库作为抽水蓄能电站的上下库,利用原有水工建筑和机电设备就可将普通电站建成既能抽水蓄能又能发电的混合式水电站,提高径流电站在电力系统中的补偿作用;也可将贯流式机组用于排灌站,收到排水发电的双重效益。
轴伸贯流式水轮发电机组采用卧式布置,也有倾斜安装的,水轮机部分主要有转轮室、转轮、导叶与控制机构、S形尾水管组成,转轮主轴穿出尾水管连接到发电机。由于低转速发电机体积庞大、价格贵,小型贯流式水轮发电机组多采用齿轮增速后带动高速发电机的形式 。
轴伸贯流式水轮发电机组的特点是,它具有一个水平或略微倾斜的轴和一个位于S形通道之外的发电机,小灯泡体内只需容纳轴承,增速器布置在水轮机和发电机的中间,尾水管流道有两个弯呈S形。因此,其效率没有竖井式和灯泡式的高。
图中蓝绿色箭头线表示水流走向,水流沿轴向进入,经过导叶进入转轮室,推动转轮旋转做功,流经转轮叶片后,通过S形尾水管排出。该水轮发电机造价与工程投资少,但效率较低,在低水头小水电站中应用较广,其中水平卧式用得最多。
竖井贯流式水轮机是将发电机组安装在水轮机上游侧的一个混凝土竖井中,水轮机部分主要由导叶机构、转轮室、转轮、尾水管组成,转轮主轴伸入混凝土竖井中,通过齿轮箱等增速装置连接到发电机。也有把发电机布置在上面厂房,转轮主轴通过扇齿轮或皮带轮与发电机连接,使竖井尺寸更小一些。
图中蓝绿色箭头线表示水流走向,水流进入后从混凝土竖井两旁通过再汇集到导叶进入转轮室,水流推动转轮旋转做功后从尾水管排出。为更清楚看清水流走向,在图3中显示剖去混凝土结构上部分的机组图,图中蓝绿色箭头线表示水流走向。竖井贯流式水轮机组结构简单、造价低廉、运行和维护方便,但效率较低,在低水头小水电站中应用较广。
灯泡贯流式水轮机组的发电机密封安装在水轮机上游侧一个灯泡型的金属壳体中,发电机水平方向安装,发动机主轴直接连接水轮机转轮。
灯泡贯流式水轮机组的水轮机部分由转轮室、导叶机构、转轮、尾水管组成;发电机轴直接连接到转轮,一同安装在钢制灯泡外壳上,发电机在灯泡壳内,转轮在灯泡尾端,发电机轴承通过轴承支持环固定在灯泡外壳上,转轮端轴承固定在灯泡尾端外壳上,发电机轴前端连接到电机滑环与转轮变桨控制的油路装置。钢制灯泡通过上支柱、下支柱固定在混凝土基础中,上支柱也是人员出入灯泡的通道。
图中蓝色箭头线表示水流走向,水流进入后从灯泡周围均匀通过到达转轮,推动转轮旋转做功后由尾水管排出。通过导叶角度与转轮叶片角度的调整配合可使水轮机运行在最优状态。灯泡贯流式水轮机组具有结构紧凑、稳定性好、效率较高,适用于低水头大中型水电站。
灯泡贯流式机组是当前广泛应用于大、中型机组的一种机型,其过水流道是轴向的或略微倾斜的。灯泡体位于水轮机转轮上游,导水机构是锥形。发电机转子直接耦合在水轮机轴上,水轮机轴由两个导轴承支持。灯泡贯流式机组以较低的转速运行,大型机组的转速大约是70~125r/min。灯泡贯流式机组唯一的限制是部件制造和运输条件的限制 。
侧翼竖井开拓法是将主竖井布置在铁矿石矿体走向一端的端部围岩或下盘围岩中的开拓方法,此时从竖井向铁矿石矿体开掘阶段石门后只能单向掘进阶段运输平巷,故矿井的基建速度慢。侧翼竖井开拓一般在下列条件下采用:
(1)矿床的地质和地形条件只允许在侧翼布置竖井。
(2)铁矿石矿体走向长度不大,地下运输费用的增加和开拓时间加长的缺点不突出。
(3)采用侧翼竖井时可使地下运输方向与地面运输方向一致,减少地面运输费用。
竖井开拓法主要开拓巷道采用竖井的开拓方法称竖井开拓法。当铁矿石矿体倾角大于45°或小于15°,且埋藏较深时,常采用竖井开拓。由于竖井的提升能力较大,故常用于大中型矿井。竖井开拓法在矿床开采中被广泛采用。
竖井内的提升容器可以是罐笼或箕斗,或既有罐笼又有箕斗,这些井筒分别称为罐笼井、箕斗井和混合井。罐笼提升灵活性大,但生产能力低,箕斗井提升能力大,但不能提升人员和材料,装矿、卸矿系统复杂。
一般认为,铁矿石年产量在30万吨以下,井深在300m左右时,采用罐笼提升;铁矿石年产量超过50万吨,深度大于300m时,通常采用箕斗提升;当开拓深度较大、地质条件复杂、施工困难时,为减少开拓工程量和适当减少井筒数目,可考虑采用混合井。
竖井根据其与铁矿石矿体的位置的不同有下盘竖井、上盘竖井、侧翼竖井和穿过铁矿石矿体的竖井四种。