选择特殊符号
选择搜索类型
请输入搜索
协同优化的(Design Technology Co-optimization,DTCO) 主要内容包括设计规则(Design Rules)、标准单元(Standard Cell)、工艺文件 (Technology File)和 Spice 模型 。
工艺和设计的协同优化体现为:工艺工程师从工艺角度出发,进行光刻方案的探索及优化,并提供设计规则和坏点图形库给设计工程师,保证在设计阶段能够避免坏点图形(Hotspots),降低芯片制造的难度。设计工程师从设计角度出发, 根据器件和芯片级别的性能需求,设计相应的版图并与工艺工程师协同工作,保证在工艺研发初期制定光刻解决方案时将设计端的需求考虑在内。通过设计和工 艺的协同优化,最终平衡了性能和可制造性的需求 。
当开始一个新技术节点光刻技术研发时,选用何种光刻技术必然和设计图形是相关联的。假设设计是完全随意的,寻找有效的光刻方案将非常困难;及时光刻能实现,其工艺窗口必然很小;考虑另一个极端,为了使光刻工艺容易实现,对设计做非常多的限制,设计工程师将无法完成设计规则的要求。因此,最佳的解决办法是工艺和设计协同优化,彼此协作满足新节点器件的要求 。
DTCO(design technology co-optimization)的核心就是设计工程师与光刻工程师共同协作,寻找最佳的设计和光刻工艺方案。这个方案要既能满足器件性能的要求,又能在Fab里实现 。
以金属层为例,介绍一种基于标准单元的DTCO方法。在制造掩模之前,评估和优化标准单元能够获得较大的工艺窗口。该方法需要在流片之前增加一个额外的学习周期,但能够有效降低工艺研发的成本。具体流程如图1中(a)所示:1)根据上一个节点标准单元库进行等比例微缩,并随机地排列来模拟数字电路物理设计中的布局流程;2)提取关键层进行光学仿真,检测标准单元中的坏点,并对坏点进行修复,进而达到优化标准单元的目的,图1中(b)给出了优化标准单元后的工艺窗口(优化前无工艺窗口);3)流片并进行检测,根据晶圆数据来进一步优化标准单元 。
图1 (a)基于标准单元的DTCO方法 (b)标准单元优化后的工艺窗口2100433B
定做鞋柜方法灵活 很多家庭在装修的时候对鞋柜是定做还是买成品犹豫不决。 在装修前期,应该请设计师根据家庭成员的构成来考虑鞋柜的尺寸和样式。 一般来说,玄关处的鞋柜主要是放置平时常穿的6~8双鞋或拖鞋的...
LED球型显示屏的特点: 与其它大屏幕终端显示器相比,LED球型显示屏主要有以下特点: 1、亮度高:户外LED显示屏的亮度大于8000mcd/m2,是目前唯一能够在户外全天候使用的大型显示终端;户内...
一、地热钻井基本要求 &nbs...
采暖、通风空调工程节能优化设计工艺探讨
现阶段,暖通空调系统在建筑工程得到广泛的应用,在一定程度上改善了人们的建筑生活环境,提高人们的生活质量,并且在室内温度、气流速度以及空气湿度方面发挥巨大作用。然而,暖通空调系统在实际应用过程中存在高能低效等问题,这表明在空调的节能设计方面依然存在诸多不合理之处,比如冷机、风机以及水泵等不在高效点轨道运行,因此无法实现能源高效利用。基于此,对建筑暖通空调节能优化设计方案进行研究和探讨。
采暖、通风空调工程节能优化设计工艺探讨
认真分析了我国采暖、通风空调工程节能优化设计工艺的现状,并在此基础上深入地探讨、分析了完成采暖、通风空调工程节能优化设计工艺的有效措施,以期为日后的相关工作提供理论参考和实践指导。
为提高轮式起重机伸缩吊臂的承载能力和减轻其自重,提出对吊臂截面形状进行协同优化研究。针对于现有协同优化方法中松弛因子取值不当导致的优化效率低下、精度不高的问题,提出了基于系统级和学科级不一致性的松弛因子自适应计算和动态罚函数协同优化算法。该方法将协同优化过程分为三个阶段,并视系统级和各学科级的差异大小,自适应动态确定松弛因子值,且在接近收敛阶段在系统级引入动态罚函数。通过典型耦合非线性数值算例和减速器多学科优化标准算例对该方法的性能进行验证,并与标准协同算法和恒定松弛因子协同算法进行比较,结果表明该方法能够随优化进程对松弛因子作自适应计算,消除了现有动态松弛法中松弛因子取值震荡问题, 具有较好的鲁棒性和较高的收敛速度。为解决初始点选择不当导致协同优化陷入局部最优解的问题,提出了融入试验设计和梯度优化的混合协同优化算法。将基于试验设计和梯度优化的初始点选择策略与自适应松弛因子计算和动态罚函数的协同优化算法进行混合,形成混合协同算法,通过实例验证,表明混合协同算法无需初始值,且用最少的迭代次数就可获取全局最优解。表明混合协同算法具有良好的收敛性、精度和稳健性。在上述协同优化方法研究基础上,以优化时综合考虑伸缩吊臂强度、刚度和局部稳定性角度出发,按照协同优化机制,将复杂的吊臂优化问题分解为系统级以及强度和局部稳定性两个子系统级的优化问题。采用NURBS曲线构建吊臂截面下部承压边形状,进一步建立了伸缩吊臂的三维参数化实体模型、强度和吊臂局部稳定性有限元分析模型,建立了强度子系统级、局部稳定性子系统级和系统级协同优化数学模型,应用上述所研究协同优化的改进算法,并采用商用多学科优化软件集成有限元分析软件进行迭代求解,最终获得最优解,达到了吊臂局部稳定性和强度刚度同等水平,材料的承载性能得到了充分发挥,吊臂的自重得到有效降低。通过将实物模型的应力测试和理论计算值进行比较,验证了优化结果的可靠性。
随着起重机向大型化发展,设计自重轻和高承载能力的伸缩吊臂是实现其起重性能优越的必要保证。而减轻伸缩吊臂自重和提高承载能力的关键,就是合理地确定其截面形状,进行截面的形状优化设计。但其截面形状优化属于一种含有静动态耦合模型、多种性态函数以及多工况的综合优化问题,传统优化方法难以获得最优解。为此,以满足吊臂强度及局部稳定性具有大致相等的安全储备为出发点,提出对吊臂的截面形状协同优化理论进行研究,给出综合考虑结构组成、性能要求及计算模型的子系统分解方法,提出基于商用分析软件为分析器的改进半解析静、动态灵敏度计算方法。提出在一致性不等式约束中,视子系统间不一致性信息的动态调整松弛因子方法。提出基于物理规划的系统级优化方法。并提出从有效减少协同变量数量、将系统优化目标分解到子系统中等途径来提高协同优化效率、降低协同难度,从而获得更加高效的协同优化求解方法。
在协同设计过程中,有两种形式:异步协同设计和同步协同设计。异步协同设计是一种松散耦合的协同工作,也就是多个设计人员在分布集成的平台上围绕共同的任务进行协同设计工作,但各自有不同的工作空间,可以在不同的时间内进行工作。由于建筑设计的复杂性和多样性,单一的同步或者异步协同模式都无法满足其需求。大多数情况下,由于同步协同需要解决网上高速实时传输建筑模型和设计意图、需要有效地解决并发冲突、需要在线动态集成等诸多问题,所以实施起来难度要大得多。事实上,在建筑协同设计过程中,异步协同与同步协同往往交替出现,专业间的协同工作常采用异步协同进行工作,在规划良好的情况下,尤其是在构建BIM 时,专业内会采用同步协同的工作方式,总之,灵活的多模式协同机制对于协同设计来说是十分重要的。